Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13793 | Accepted: 4838 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0
Sample Output
83
100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
题目大意:一个序列,每个数有两个属性,ai和bi,求去掉k个数后的sum{ai}/sum{bi}最大
题解:01分数规划
设答案为t,若存在sigma ai/ sigma bi >t,那么答案还可以继续扩大。
将公式变形,sigma ai>t*sigma bi,sigma (ai-t*bi)>0,令si=ai-t*bi,然后排序,去掉k个小的后的
sigma si是否大于0,若是则答案还可以继续扩大,否则缩小。
代码:
#include<iostream> #include<cstdio> #include<algorithm> #define maxn 1009 using namespace std; int n,k; double l,r,mid,a[maxn],b[maxn],s[maxn]; double eps=1e-7; bool check(double p){ for(int i=1;i<=n;i++)s[i]=a[i]-p*b[i]; sort(s+1,s+n+1);double all=0.; for(int i=n;i>k;i--)all+=s[i]; return all>0; } int main(){ while(1){ scanf("%d%d",&n,&k); if(!n&&!k)break; for(int i=1;i<=n;i++)scanf("%lf",&a[i]); for(int i=1;i<=n;i++)scanf("%lf",&b[i]); l=0;r=1; while(r-l>eps){ mid=(l+r)/2.;double all=0.; if(check(mid))l=mid; else r=mid; } printf("%.0lf ",l*100); } return 0; }