1 #include <opencv2/highgui/highgui.hpp> 2 #include <opencv2/imgproc/imgproc.hpp> 3 #include <opencv2/core/core.hpp> 4 #include <opencv2/objdetect/objdetect.hpp> 5 #include <QDebug> 6 7 using namespace cv; 8 9 void detectAndDraw( Mat& img, CascadeClassifier& cascade, 10 CascadeClassifier& nestedCascade, 11 double scale, bool tryflip ); 12 13 int main() 14 { 15 VideoCapture cap(0); //打开默认摄像头 16 if(!cap.isOpened()) 17 { 18 return -1; 19 } 20 Mat frame; 21 Mat edges; 22 23 CascadeClassifier cascade, nestedCascade; 24 bool stop = false; 25 //训练好的文件名称,放置在可执行文件同目录下 26 cascade.load("haarcascade_frontalface_alt.xml"); 27 nestedCascade.load("haarcascade_eye_tree_eyeglasses.xml"); 28 while(!stop) 29 { 30 cap>>frame; 31 detectAndDraw( frame, cascade, nestedCascade,2,0 ); 32 if(waitKey(30) >=0) 33 stop = true; 34 } 35 return 0; 36 } 37 void detectAndDraw( Mat& img, CascadeClassifier& cascade, 38 CascadeClassifier& nestedCascade, 39 double scale, bool tryflip ) 40 { 41 int i = 0; 42 double t = 0; 43 //建立用于存放人脸的向量容器 44 vector<Rect> faces, faces2; 45 //定义一些颜色,用来标示不同的人脸 46 const static Scalar colors[] = { CV_RGB(0,0,255), 47 CV_RGB(0,128,255), 48 CV_RGB(0,255,255), 49 CV_RGB(0,255,0), 50 CV_RGB(255,128,0), 51 CV_RGB(255,255,0), 52 CV_RGB(255,0,0), 53 CV_RGB(255,0,255)} ; 54 //建立缩小的图片,加快检测速度 55 //nt cvRound (double value) 对一个double型的数进行四舍五入,并返回一个整型数! 56 Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); 57 //转成灰度图像,Harr特征基于灰度图 58 cvtColor( img, gray, CV_BGR2GRAY ); 59 //改变图像大小,使用双线性差值 60 resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); 61 //变换后的图像进行直方图均值化处理 62 equalizeHist( smallImg, smallImg ); 63 64 //程序开始和结束插入此函数获取时间,经过计算求得算法执行时间 65 t = (double)cvGetTickCount(); 66 //检测人脸 67 //detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示 68 //每次图像尺寸减小的比例为1.1,2表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大 69 //小都可以检测到人脸),CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的 70 //最小最大尺寸 71 cascade.detectMultiScale( smallImg, faces, 72 1.1, 2, 0 73 //|CV_HAAR_FIND_BIGGEST_OBJECT 74 //|CV_HAAR_DO_ROUGH_SEARCH 75 |CV_HAAR_SCALE_IMAGE 76 , 77 Size(30, 30)); 78 //如果使能,翻转图像继续检测 79 if( tryflip ) 80 { 81 flip(smallImg, smallImg, 1); 82 cascade.detectMultiScale( smallImg, faces2, 83 1.1, 2, 0 84 //|CV_HAAR_FIND_BIGGEST_OBJECT 85 //|CV_HAAR_DO_ROUGH_SEARCH 86 |CV_HAAR_SCALE_IMAGE 87 , 88 Size(30, 30) ); 89 for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ) 90 { 91 faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); 92 } 93 } 94 t = (double)cvGetTickCount() - t; 95 // qDebug( "detection time = %g ms ", t/((double)cvGetTickFrequency()*1000.) ); 96 for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ) 97 { 98 Mat smallImgROI; 99 vector<Rect> nestedObjects; 100 Point center; 101 Scalar color = colors[i%8]; 102 int radius; 103 104 double aspect_ratio = (double)r->width/r->height; 105 if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) 106 { 107 //标示人脸时在缩小之前的图像上标示,所以这里根据缩放比例换算回去 108 center.x = cvRound((r->x + r->width*0.5)*scale); 109 center.y = cvRound((r->y + r->height*0.5)*scale); 110 radius = cvRound((r->width + r->height)*0.25*scale); 111 circle( img, center, radius, color, 3, 8, 0 ); 112 } 113 else 114 rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)), 115 cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)), 116 color, 3, 8, 0); 117 if( nestedCascade.empty() ) 118 continue; 119 smallImgROI = smallImg(*r); 120 //同样方法检测人眼 121 nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 122 1.1, 2, 0 123 //|CV_HAAR_FIND_BIGGEST_OBJECT 124 //|CV_HAAR_DO_ROUGH_SEARCH 125 //|CV_HAAR_DO_CANNY_PRUNING 126 |CV_HAAR_SCALE_IMAGE 127 , 128 Size(30, 30) ); 129 for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ) 130 { 131 center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale); 132 center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale); 133 radius = cvRound((nr->width + nr->height)*0.25*scale); 134 circle( img, center, radius, color, 3, 8, 0 ); 135 } 136 } 137 cv::imshow( "result", img ); 138 }