• Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法


    E. XOR and Favorite Number
     
     

    Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.

    Input
     

    The first line of the input contains integers nm and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

    The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

    Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

    Output
     

    Print m lines, answer the queries in the order they appear in the input.

    Examples
    input
     
    6 2 3
    1 2 1 1 0 3
    1 6
    3 5
    output
     
    7
    0
     
    Note

    In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.

    In the second sample xor equals 1 for all subarrays of an odd length.

    题意:

      

      给你一个长度为n的序列

      m个询问,每次询问你l,r之间有多少对子区间的异或和等于k

    题解:

      怼一波莫队

    #include<bits/stdc++.h>
    using namespace std;
    const int N = 1e6+10, M = 5e6+10, inf = 1e9+7, mod = 1e9+7;
    
    int  H[M];
    int sum[N],n,m,k,a[N],pos[N];
    long long  an[N],ans;
    struct ss{int l,r,id;}q[N];
    
    int cmp(ss s1,ss s2) {if(pos[s1.l]==pos[s2.l]) return s1.r<s2.r;else return s1.l<s2.l;}
    int cmpl(ss s1,ss s2) {return s1.id<s2.id;}
    void update(int p,int add) {
        if(add==-1) {
            H[sum[p]]--;
            ans -= H[sum[p]^k];
        }
        else {
            ans += H[sum[p]^k];
            H[sum[p]]++;
        }
    }
    int main() {
        scanf("%d%d%d",&n,&m,&k);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        H[0] = 1;
        for(int i=1;i<=n;i++) sum[i] = sum[i-1] ^ a[i];
        for(int i=1;i<=m;i++) {
            scanf("%d%d",&q[i].l,&q[i].r);
            q[i].id = i;
        }
        int block = (int)sqrt((double) n + 0.5);
        for(int i=1;i<=n;i++) pos[i] = (i-1)/block  + 1;
        sort(q+1,q+m+1,cmp);
        for(int i=1,l=1,r=0;i<=m;i++) {
            for(;r<q[i].r;r++) update(r+1,1);
            for(;l>q[i].l;l--) update(l-2,1); 
            for(;r>q[i].r;r--) update(r,-1);
            for(;l<q[i].l;l++) update(l-1,-1);
            an[q[i].id] = ans;
        }
        for(int i=1;i<=m;i++) printf("%I64d
    ",an[i]);
        return 0;
    }
  • 相关阅读:
    Go开发中的一些注意事项
    ubuntu 下的一个很好的Github 客户端
    ubuntu安装 dotnet core sdk ,runtime
    ubuntu 彻底卸载自带的firefox 其他软件应该也是一致。
    企业应用架构研究系列二十六:信号量SemaphoreSlim与Semaphore
    9th sduwhcpc
    CS224N Lecture 2
    CSP认证
    CS224N Lecture 1
    【Substrate Collectables教程】【第2章Kitties】2 创建一个 Event
  • 原文地址:https://www.cnblogs.com/zxhl/p/5444610.html
Copyright © 2020-2023  润新知