• Haskell语言学习笔记(27)Endo, Dual, Foldable


    Endo Monoid

    newtype Endo a = Endo { appEndo :: a -> a }
    instance Monoid (Endo a) where
            mempty = Endo id
            Endo f `mappend` Endo g = Endo (f . g)
    

    Endo 是个 newtype,也就是对现有类型的封装。
    Endo a 封装的是一个自反射的函数,即 a->a。通过 appEndo 字段可以取出这个函数。
    Endo a 在结合时结合两个函数,因此它本质上是对函数合成运算符 (.) 的封装。
    Endo a 是一个幺半群。这是因为自反射函数在函数合成时满足结合律。

    Dual Monoid

    newtype Dual a = Dual { getDual :: a }
    instance Monoid a => Monoid (Dual a) where
            mempty = Dual mempty
            Dual x `mappend` Dual y = Dual (y `mappend` x)
    

    Dual 是个 newtype,也就是对现有类型的封装。
    Dual a 封装的是一个值,即 a。通过 getDual 字段可以取出这个值。
    Dual a 是一个幺半群,前提是 a 是个幺半群。
    Dual a 在结合时交换两个操作数的值,因此它本质上是对 flip 函数的封装。

    证明 Dual a 满足结合律。
    (Dual x <> Dual y) <> Dual z
    = Dual (y <> x) <> Dual z
    = Dual (z <> (y <> x))
    Dual x <> (Dual y <> Dual z)
    = Dual x <> Dual (z <> y)
    = Dual ((z <> y) <> x)
    由于 a 是 Monoid 类型, 满足结合律
    所以 (z <> y) <> x = z <> (y <> x)
    => Dual (z <> (y <> x)) = Dual ((z <> y) <> x)
    => Dual x <> (Dual y <> Dual z) = (Dual x <> Dual y) <> Dual z
    

    Foldable 的法则

    class Foldable t where
        fold :: Monoid m => t m -> m
        fold = foldMap id
    
        foldMap :: Monoid m => (a -> m) -> t a -> m
        foldMap f = foldr (mappend . f) mempty
    
        foldr :: (a -> b -> b) -> b -> t a -> b
        foldr f z t = appEndo (foldMap (Endo #. f) t) z
    
        foldl :: (b -> a -> b) -> b -> t a -> b
        foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
    

    Foldable 类型类的实例都必须符合以下法则。

    1. foldr f z t = appEndo (foldMap (Endo . f) t ) z
    2. foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
    3. fold = foldMap id
    

    [] 是个 Foldable

    instance Foldable [] where
        foldl   = List.foldl
        foldr   = List.foldr
    
    证明 Foldable 类型类的实例 [] 符合 Foldable 的法则
    1. foldr f z t = appEndo (foldMap (Endo . f) t ) z
    foldr f z t
    = List.foldr f z [x1, x2, ..., xn]
    = x1 `f` (x2 `f` (...(xn `f` z)...))
    appEndo (foldMap (Endo . f) t ) z
    = appEndo (foldr (mappend . (Endo . f)) mempty [x1, x2, ..., xn]) z
    = appEndo (foldr (mappend . (Endo . f)) (Endo id) [x1, x2, ..., xn]) z
    = appEndo ( (mappend . (Endo . f)) x1 ( (mappend . (Endo . f)) x2 ( ... ( (mappend . (Endo . f)) xn (Endo id) ) ... ) ) ) z
    = appEndo ( (Endo . (x1 `f`)) <> ( (Endo . (x2 `f`)) <> ( ... <> ( (Endo . (f . id)) xn ) ... ) ) ) z
    = appEndo ( Endo . ((x1 `f`) . (x2 `f`) . ... . (xn `f`)) ) $ z
    = (x1 `f`) . (x2 `f`) . ... . (xn `f`) $ z
    = x1 `f` (x2 `f` (...(xn `f` z)...))
    2. foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
    foldl f z t
    = List.foldl f z [x1, x2, ..., xn]
    = (...((z `f` x1) `f` x2)...) `f` xn
    appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
    = appEndo (getDual (foldr (mappend . (Dual . Endo . flip f)) mempty [x1, x2, ..., xn])) z
    = appEndo (getDual (foldr (mappend . (Dual . Endo . flip f)) (Dual . Endo . id) [x1, x2, ..., xn])) z
    = appEndo ( getDual ( (Dual . Endo . flip f) x1 <> ( (Dual . Endo . flip f) x2 <> ( ... <> ( (Dual . Endo . (flip f . id)) xn ) ... ) ) ) ) z
    = appEndo ( getDual ( (Dual . Endo . (`f` x1)) <> ( (Dual . Endo . (`f` x2)) <> ( ... <> ( (Dual . Endo . (`f` xn)) ) ... ) ) ) ) z
    = appEndo ( getDual ( (Dual . Endo . ((`f` xn) . ... . (`f` x2) . (`f` x1)) ) ) z
    =  (`f` xn) . ... . (`f` x2) . (`f` x1) $ z
    = (...((z `f` x1) `f` x2)...) `f` xn
    

    build 与 (++)

    build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
    build g = g (:) []
    
    (++) xs ys = foldr (:) ys xs
    

    foldMap 与 concatMap

    foldMap :: Monoid m => (a -> m) -> t a -> m
    foldMap f = foldr (mappend . f) mempty
    当 m := [b] 时 foldMap := concatMap

    concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
    concatMap f xs = build (c n -> foldr (x b -> foldr c b (f x)) n xs)
    
    concatMap f xs
    = build (c n -> foldr (x b -> foldr c b (f x)) n xs)
    = (c n -> foldr (x b -> foldr c b (f x)) n xs) (:) []
    = foldr (x b -> foldr (:) b (f x)) [] xs
    
    foldMap f xs
    = foldr (mappend . f) mempty xs
    = foldr ((++) . f) [] xs
    = foldr (x b -> foldr (:) b (f x)) [] xs
    

    fold 与 concat

    fold :: Monoid m => t m -> m
    fold = foldMap id
    当 m := [a] 时 fold := concat

    concat :: Foldable t => t [a] -> [a]
    concat xs = build (c n -> foldr (x y -> foldr c y x) n xs)
    
    concat xs
    = build (c n -> foldr (x y -> foldr c y x) n xs)
    = (c n -> foldr (x y -> foldr c y x) n xs) (:) xs
    = foldr (x y -> foldr (:) y x) [] xs
    
    fold xs
    = foldMap id xs
    = foldr (mappend . id) mempty xs
    = foldr (++) [] xs
    = foldr (x y -> foldr (:) y x) [] xs
    

    reverse foldl foldr

    用 foldl foldr 实现 reverse

    How can I write reverse by foldr efficiently in Haskell?

    reverse' xs
    = foldl (flip (:)) [] xs
    = appEndo . getDual $ foldMap (Dual . Endo . flip (flip (:))) xs $ []
    = appEndo . getDual $ foldr (mappend . Dual . Endo . (:)) mempty xs $ []
    = appEndo . foldr (flip mappend . Endo . (:)) mempty $ xs $ []
    = foldr (flip (.) . (:)) id xs []
    = flip (foldr (flip (.) . (:)) id) [] xs
    reverse' = flip (foldr (flip (.) . (:)) id) []
    

    将 reverse' 的推导过程一般化,可以得到

    foldl f
    = flip (foldr (flip (.) . flip f) id)
    

    下面证明

    foldl f z xs
    = foldr (flip (.) . flip f) id xs z
    = foldr step id xs z
      where step x g a = g (f a x)
    
    step x g a = g (f a x)
    step x g a = g ((flip f) x a)
    step x g a = g . (flip f) x $ a
    step x g   = g . (flip f) x
    step x g   = (.) g ((flip f) x)
    step x g   = (flip (.)) ((flip f) x) g
    step x     = (flip (.)) ((flip f) x)
    step x     = flip (.) . flip f $ x
    step       = flip (.) . flip f
    
  • 相关阅读:
    2019/5/15 写题总结
    CodeForces 804C Ice cream coloring
    CodeForces 367 C Sereja and the Arrangement of Numbers 欧拉回路
    CodeForces 464 B Restore Cube
    CodeForces 402 E Strictly Positive Matrix
    CodeForces 628 D Magic Numbers 数位DP
    CodeForces 340E Iahub and Permutations 错排dp
    CodeForces 780 E Underground Lab
    BZOJ 1010 [HNOI2008]玩具装箱toy 斜率优化dp
    CodeForces 715B Complete The Graph 特殊的dijkstra
  • 原文地址:https://www.cnblogs.com/zwvista/p/7665349.html
Copyright © 2020-2023  润新知