mapmap读取不同格式的文件这个问题一直就有,之前的读取方式是在map里获取文件的名称,依照名称不同分不同的方式读取,比如以下的方式
//取文件名 InputSplit inputSplit = context.getInputSplit(); String fileName = ((FileSplit) inputSplit).getPath().toString(); if(fileName.contains("track")) { } else if(fileName.contains("complain3")) { }
这样的方式有两个问题,一是在每读入一条数据的时候都要获取文件的名称,二是要依据名称推断依照什么样的格式进行解析,显得非常丑陋,事实上hadoop提供了解决问题的方法
使用mutipleInputs来解决
public class MutipleInputsTest { private static String complain = "/dsap/rawdata/operate/complain3/"; private static String csOperate = "/dsap/rawdata/creditSystemSearchLog/"; private static String output = "/dsap/rawdata/mutipleInputsTest/result1"; public static class Mapper1 extends Mapper<Object, Text, Text, Text>{ public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { Counter counter = context.getCounter("myCounter", "counter1"); counter.increment(1l); } } public static class Mapper2 extends Mapper<Object, Text, Text, Text>{ public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { Counter counter = context.getCounter("myCounter", "counter2"); counter.increment(1l); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "mutipleInputsTest"); job.setJarByClass(MutipleInputsTest.class); MultipleInputs.addInputPath(job, new Path(complain + "20141217"), TextInputFormat.class, Mapper1.class); MultipleInputs.addInputPath(job, new Path(csOperate + "20141217"), TextInputFormat.class, Mapper2.class); FileOutputFormat.setOutputPath(job, new Path(output)); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.waitForCompletion(true); /**获取自己定义counter的大小。假设等于质心的大小。说明质心已经不会发生变化了,则程序停止迭代*/ long counter1 = job.getCounters().getGroup("myCounter").findCounter("counter1").getValue(); long counter2 = job.getCounters().getGroup("myCounter").findCounter("counter2").getValue(); System.out.println("counter:" + counter1 + " " + counter2); } }
看一下执行结果
能够看到两个不同格式的文件进入了两个不同的mapper进行处理。这样在两个mapper里就能够仅仅针对某一种格式的文件进行解析了