• 「BOI2007」Mokia


    「BOI2007」Mokia

    传送门
    把查询拆成四部分然后容斥计算答案(二维前缀和)
    然后 ( ext{CDQ}) 分治算答案。
    参考代码:

    #include <algorithm>
    #include <cstdio>
    #define rg register
    #define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
    using namespace std;
    template < class T > inline void read(T& s) {
    	s = 0; int f = 0; char c = getchar();
    	while ('0' > c || c > '9') f |= c == '-', c = getchar();
    	while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
    	s = f ? -s : s;
    }
    
    const int _ = 2e5 + 5, __ = 2e6 + 5;
    
    int W, tr[__], num;
    struct node { int opt, id, x, y, v, ans; } t[_], tt[_];
    inline bool cmp(const node& a, const node& b) { return a.id < b.id; }
    
    inline void update(int x, int v)
    { for (rg int i = x; i <= W; i += i & -i) tr[i] += v; }
    
    inline int query(int x)
    { int res = 0; for (rg int i = x; i >= 1; i -= i & -i) res += tr[i]; return res; }
    
    inline void CDQ(int l, int r) {
    	if (l == r) return ;
    	int mid = (l + r) >> 1;
    	CDQ(l, mid), CDQ(mid + 1, r);
    	int i = l, j = mid + 1, p = l;
    	while (i <= mid && j <= r) {
    		if (t[i].x <= t[j].x) { if (t[i].opt == 0) update(t[i].y, t[i].v); tt[p++] = t[i++]; }
    		else { if (t[j].opt == 1) t[j].ans += query(t[j].y); tt[p++] = t[j++]; }
    	}
    	while (i <= mid) { if (t[i].opt == 0) update(t[i].y, t[i].v); tt[p++] = t[i++]; }
    	while (j <= r) { if (t[j].opt == 1) t[j].ans += query(t[j].y); tt[p++] = t[j++]; }
    	for (rg int i = l; i <= mid; ++i) if (t[i].opt == 0) update(t[i].y, -t[i].v);
    	for (rg int i = l; i <= r; ++i) t[i] = tt[i];
    }
    
    int main() {
    	int opt; read(opt), read(W);
    	while (1) {
    		read(opt); if (opt == 3) break ;
    		if (opt == 1) {
    			int x, y, v; read(x), read(y), read(v);
    			t[++num] = (node) { 0, num, x, y, v, 0 };
    		} else {
    			int xl, yl, xr, yr;
    			read(xl), read(yl), read(xr), read(yr);
    			t[++num] = (node) { 1, num, xr, yr, 0, 0 };
    			t[++num] = (node) { 1, num, xl - 1, yr, 0, 0 };
    			t[++num] = (node) { 1, num, xr, yl - 1, 0, 0 };
    			t[++num] = (node) { 1, num, xl - 1, yl - 1, 0, 0 };
    		}
    	}
    	CDQ(1, num), sort(t + 1, t + num + 1, cmp);
    	for (rg int i = 1; i <= num; ++i)
    		if (t[i].opt == 1)
    			printf("%d
    ", t[i].ans - t[i + 1].ans - t[i + 2].ans + t[i + 3].ans), i += 3;
    	return 0;
    }
    
  • 相关阅读:
    bzoj 1031: [JSOI2007]字符加密Cipher 後綴數組模板題
    hdu3949 XOR xor高斯消元
    The xor-longest Path
    Contest20140906 反思
    Contest20140906 ProblemC 菲波拉契数制 DP
    Contest20140906 ProblemA dp+线段树优化
    bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
    tyvj P1716
    BZOJ 1012 [JSOI2008]最大数maxnumber【线段树】
    Bzoj1083 1083: [SCOI2005]繁忙的都市【MST】
  • 原文地址:https://www.cnblogs.com/zsbzsb/p/12231695.html
Copyright © 2020-2023  润新知