• PCA人脸识别的python实现


         这几天看了看PCA及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到92.5%~98.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到50行哦。

    # -*- coding: utf-8 -*-
    import numpy as np
    import os, glob, random, cv2
    
    def pca(data,k):
        data = np.float32(np.mat(data)) 
        rows,cols = data.shape                              #取大小
        data_mean = np.mean(data,0)                         #求均值
        Z = data - np.tile(data_mean,(rows,1))
        D,V = np.linalg.eig(Z*Z.T )                         #特征值与特征向量
        V1 = V[:, :k]                                       #取前k个特征向量
        V1 = Z.T*V1
        for i in xrange(k):                                 #特征向量归一化
            V1[:,i] /= np.linalg.norm(V1[:,i])
        return np.array(Z*V1),data_mean,V1
    
    def loadImageSet(folder=u'E:/迅雷下载/faceProcess/att_faces', sampleCount=5): #加载图像集,随机选择sampleCount张图片用于训练
        trainData = []; testData = []; yTrain=[]; yTest = [];
        for k in range(40):
            folder2 = os.path.join(folder, 's%d' % (k+1))
            data = [cv2.imread(d.encode('gbk'),0) for d in glob.glob(os.path.join(folder2, '*.pgm'))]
            sample = random.sample(range(10), sampleCount)
            trainData.extend([data[i].ravel() for i in range(10) if i in sample])
            testData.extend([data[i].ravel() for i in range(10) if i not in sample])
            yTest.extend([k]* (10-sampleCount))
            yTrain.extend([k]* sampleCount)
        return np.array(trainData),  np.array(yTrain), np.array(testData), np.array(yTest)
    
    def main(): 
        xTrain_, yTrain, xTest_, yTest = loadImageSet()
        num_train, num_test = xTrain_.shape[0], xTest_.shape[0]
        
        xTrain,data_mean,V = pca(xTrain_, 50)
        xTest = np.array((xTest_-np.tile(data_mean,(num_test,1))) * V)  #得到测试脸在特征向量下的数据
    
        yPredict =[yTrain[np.sum((xTrain-np.tile(d,(num_train,1)))**2, 1).argmin()] for d in xTest]
        print u'欧式距离法识别率: %.2f%%'% ((yPredict == yTest).mean()*100)
    
        svm = cv2.SVM()                              #支持向量机方法
        svm.train(np.float32(xTrain), np.float32(yTrain), params = {'kernel_type':cv2.SVM_LINEAR})
        yPredict = [svm.predict(d) for d in np.float32(xTest)]
        #yPredict = svm.predict_all(xTest.astype(np.float64)) 
        print u'支持向量机识别率: %.2f%%' % ((yPredict == yTest).mean()*100)
    
    if __name__ =='__main__':
        main()
    

      

  • 相关阅读:
    sas 基础(1)-关于数据格式的SAS函数
    sas 命令行打开SAS IDE 的代码
    获取指定数据集观测数
    sas spawner
    sas 解析json
    正则表达式(更新中。。。)
    async await的简单使用
    element ui只输入数字校验
    element ui中表单循环项的校验
    微信小程序template和组件
  • 原文地址:https://www.cnblogs.com/zmshy2128/p/6150690.html
Copyright © 2020-2023  润新知