Farey Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2 3 4 5 0
Sample Output
1 3 5 9
Source
POJ Contest,Author:Mathematica@ZSU
欧拉函数模板题,16ms的O(n)线性筛,代码是抄贾教的。。
Codes:
1 #include<cstdio> 2 #include<iostream> 3 using namespace std; 4 int n,phi[1001000],tot,prime[500000]; 5 long long sum[1001000]; 6 bool check[1000100]; 7 void PHI(int n){ 8 phi[1] = 1; 9 for(int i=2;i<=n;i++){ 10 if(!check[i]){ 11 prime[++tot] = i; 12 phi[i] = i - 1; 13 } 14 for(int j=1;j<=tot;j++){ 15 if(prime[j]*i>n) break; 16 check[prime[j]*i] = true; 17 if(i%prime[j]==0){ 18 phi[i*prime[j]] = phi[i] * prime[j]; 19 break; 20 }else phi[i*prime[j]] = phi[i] * (prime[j]-1); 21 } 22 } 23 } 24 25 int main(){ 26 PHI(1000000); 27 sum[2] = 1; 28 for(int i=3;i<=1000000;i++) sum[i]+=sum[i-1] + phi[i]; 29 while(scanf("%d",&n)!=EOF && n) cout<<sum[n]<<endl; 30 return 0; 31 }