Splits the string
时间限制:1000 ms | 内存限制:65535 KB
难度:3
- 描述
-
Hrdv is interested in a string,especially the palindrome string.So he wants some palindrome string.
A sequence of characters is a palindrome if it is the same written forwards and backwards. For example, 'abeba' is a palindrome, but 'abcd' is not.
A partition of a sequence of characters is a list of one or more disjoint non-empty groups of consecutive characters whose concatenation yields the initial sequence. For example, ('race', 'car') is a partition of 'racecar' into two groups.
Given a sequence of characters, we can always create a partition of these characters such that each group in the partition is a palindrome! Given this observation it is natural to ask: what is the minimum number of groups needed for a given string such that every group is a palindrome?
For example:
'racecar' is already a palindrome, therefore it can be partitioned into one group.'fastcar' does not contain any non-trivial palindromes, so it must be partitioned as ('f', 'a', 's', 't', 'c', 'a', 'r').'aaadbccb' can be partitioned as ('aaa', 'd', 'bccb').Input begins with the number n of test cases. Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within.
- 输入
- Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within.
- 输出
- For each test case, output a line containing the minimum number of groups required to partition the input into groups of palindromes.
- 样例输入
-
racecar fastcar aaadbccb
- 样例输出
-
1 7 3
- 上传者
- TC_胡仁东
#include <iostream> #include <cstring> #include <cstdio> using namespace std; int dp[1005]; char a[1005]; int judge(int i, int j){ // while(a[i] == a[j]){ // if(i == j) // break; // i++; // if(i == j) // break; // j--; // if(i == j) // break; // } // if(i == j && a[i] == a[j]) // return 1; // else // return 0; //上面判断回文太麻烦了 int mid = (i + j) >> 1; int m = i; for(int i; i <= mid; i++){ if(a[i] != a[j - i + m]) //注意j - i时要加上数组片段传来的起点. return 0; } return 1; } int main(){ while(~scanf("%s", a + 1)){ int len = strlen(a + 1); for(int i = 1; i <= len; i++){ dp[i] = i; for(int j = 1; j <= i; j++){ if(a[i] == a[j] && judge(j, i)){ //dp[i]表示的是0到i的最少回文串数 dp[i] = min(dp[i], dp[j - 1] + 1); //j从是从0开始扫描到i如果发现j到i是回文, //则j到i为一个回文串,就可以得到这个递推关系 } } } printf("%d ", dp[len]); } return 0; }