• Codeforces 717A Festival Organization(组合数学:斯特林数+Fibonacci数列+推公式)


    Codeforces 717A Festival Organization(组合数学:斯特林数+Fibonacci数列+推公式)

    牛逼题。。。。。推公式非常的爽。。。虽然我是看了别人的博客才推出来的。。。

    0.1 斯特林数

    下面要用到的是带符号的第一类斯特林数。

    \(x^{n\downarrow}=\prod_{i=0}^{n-1}(x-i)=\sum_{k=0}^ns(n,k)x^k\)

    有递推公式\(s(n,m)=s(n-1,m-1)-(n-1)*s(n-1,m)\)

    0.2 斐波那契数列的通项公式

    \(f_i=\frac{1}{\sqrt5}[(\frac{1+\sqrt5}{2})^i-(\frac{1-\sqrt5}{2})^i]\)

    1 求出长度为\(n\)的合法0/1序列数

    先考虑dp做法,\(a_{i,0}\)表长度为\(i\),结尾为\(1\)的方案数,\(a_{i,1}\)同理。

    很明显有\(a_{0,0}=a_{0,1}=1,a_{i,0}=a_{i-1,1},a_{i,1}=a_{i-1,0}+a_{i-1,1}\)

    数学归纳法很轻松就能证出\(a_{i,0}=F_{i},a_{i,1}=F_{i+1}\),则长度为\(n\)的方案数为\(F_{i+2}\),其中\(F_i\)表斐波那契数列的第\(i\)\((F_1=F_2=1)\)

    2 \(Ans,S_n\)

    \(Ans=\sum_{i=l}^r C_{F_{i+2}}^k\)

    \(S_n=\sum_{i=1}^nC_{F_{i+2}}^k=\sum_{i=3}^{n+2}C_{F_i}^k\)

    则有\(Ans=S_r-S_{l-1}\)

    3 化简

    \(S_n\)

    \(=\frac{1}{k!}\sum_{i=3}^{n+2}\prod_{j=0}^{k-1}(F_i-j)\)

    \(=\frac{1}{k!}\sum_{i=3}^{n+2}\sum_{j=0}^ks(k,j)F_i^j\)

    \(=\frac{1}{k!}\sum_{j=0}^k\sum_{i=3}^{n+2}s(k,j)F_i^j\)

    \(=\frac{1}{k!}\sum_{j=0}^ks(k,j)\sum_{i=3}^{n+2}F_i^j\)

    \(=\frac{1}{k!}\sum_{j=0}^ks(k,j)\sum_{i=3}^{n+2}(\frac{1}{\sqrt5}[a^i-b^i])^j\) 其中\(a=\frac{1+\sqrt5}{2},b=\frac{1-\sqrt5}{2}\)

    \(=\frac{1}{k!}\sum_{j=0}^ks(k,j)\sum_{i=3}^{n+2}\sum_{p=0}^j(\frac{1}{5}\sqrt5)^jC_j^pa^{ip}(-1)^{j-p}b^{i(j-p)}\)

    \(=\frac{1}{k!}\sum_{j=0}^ks(k,j)\sum_{p=0}^j(\frac{1}{5}\sqrt5)^jC_j^p(-1)^{j-p}\sum_{i=3}^{n+2}a^{ip}b^{i(j-p)}\)

    \(=\frac{1}{k!}\sum_{j=0}^ks(k,j)\sum_{p=0}^j(\frac{1}{5}\sqrt5)^jC_j^p(-1)^{j-p}\sum_{i=3}^{n+2}(a^pb^{j-p})^i\)

    \(=\frac{1}{k!}\sum_{j=0}^ks(k,j)\sum_{p=0}^j(\frac{1}{5}\sqrt5)^jC_j^p(-1^{j-p})*T(j,p)\)

    其中,令\(q(j,p)=a^pb^{j-p}\)

    \[T(j,p)=\begin{cases} n & q(j,p)=1 \\ \frac{q^3(j,p)(1-q^n(j,p))}{1-q(j,p)} & q(j,p)\not=1 \end{cases}\]

    枚举\(j,p\)就能得到答案了。

    4 代码

    #include <bits/stdc++.h>
    #define pii pair<long long,long long>
    #define LL long long
    #define x first
    #define y second
    #define MAXN 7000
    using namespace std;
    const LL mod = 1000000007;
    LL k, L, R;
    LL qp(LL a, LL b)
    {
        LL ret = 1;
        while (b)
        {
            if (b & 1)
                ret = ret * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ret;
    }
    
    
    LL Inv[208];
    LL inv(LL a)
    {
        if (a > 200)
            return qp(a, mod - 2);
        else if (!Inv[a])
            return Inv[a] = qp(a, mod - 2);
        else
            return Inv[a];
    }
    
    LL CC[208][208];
    LL S[208][208];
    void init()
    {
        CC[0][0] = 1;
        for (LL i = 1; i <= 200; ++i)
        {
            CC[i][0] = 1;
            for (LL j = 1; j <= i; ++j)
            {
                CC[i][j] = CC[i][j - 1] * inv(j) % mod * (i - j + 1) % mod;
            }
        }
        S[0][0] = 1;
        for (LL i = 1; i <= 200; ++i)
        {
            S[i][0] = 0;
            for (LL j = 1; j < i; ++j)
            {
                S[i][j] = ((S[i - 1][j - 1] - (i - 1) * S[i - 1][j] % mod) % mod + mod) % mod;
            }
            S[i][i] = 1;
        }
    }
    
    
    
    struct tls
    {
        LL a, b;
        tls(){}
        tls(LL _a, LL _b){a = (_a % mod + mod) % mod; b = (_b % mod + mod) % mod;}
        tls operator+(const tls& t) const
        {
            return tls((a + t.a) % mod, (b + t.b) % mod);
        }
        tls operator-(const tls& t) const
        {
            return tls((a - t.a + mod) % mod, (b - t.b + mod) % mod);
        }
        tls operator*(const tls& t) const
        {
            return tls((a*t.a%mod + 5*b%mod*t.b%mod) % mod, (a*t.b%mod + b*t.a%mod) % mod);
        }
        tls operator/(const tls& t) const
        {
            LL r = inv((t.a*t.a%mod - 5*t.b%mod*t.b%mod + mod) % mod);
            if ((t.a*t.a%mod - 5*t.b%mod*t.b%mod + mod) % mod == 0)
                throw;
            return tls(r * (((a*t.a%mod) - (b*t.b%mod*5%mod) + mod) % mod) % mod, (r * (((t.a*b%mod) - (a*t.b%mod) + mod) % mod) % mod));
        }
    };
    
    tls qp(tls a, LL b)
    {
        tls ret(1, 0);
        while (b)
        {
            if (b & 1)
                ret = ret * a;
            a = a * a;
            b >>= 1;
        }
        return ret;
    }
    
    ostream& operator<<(ostream& out, tls p)
    {
        out << p.a << "+" << p.b << "sqrt(5)";
        return out;
    }
    
    LL gao(LL n, LL k)
    {
        tls a(inv(2)%mod, inv(2)%mod), b(inv(2)%mod,(mod-inv(2)%mod)%mod);
        tls ret(0, 0);
        for (LL j = 0; j <= k; ++j)
        {
            tls tot(0, 0);
            for (LL p = 0; p <= j; ++p)
            {
                tls temp(1, 0);
                tls q = qp(a/b, p) * qp(b, j);
                if (q.a == 1 && q.b == 0)
                {
                    temp = temp * tls(n, 0);
                }
                else
                {
                    temp = temp * qp(q, 3) * (tls(1, 0) - qp(q, n));
                    temp = temp / (tls(1, 0) - q);
                }
                temp = temp * tls(qp(mod - 1, j - p), 0) * tls(CC[j][p], 0);
    
                tot = tot + temp;
            }
            tot = tot * tls(S[k][j], 0) * qp(tls(0, inv(5)), j);
            ret = ret + tot;
        }
        for (LL i = 1; i <= k; ++i)
        {
            ret = ret * tls(inv(i), 0);
        }
        return ret.a;
    }
    
    
    int main()
    {
        /*cout << inv(25) << endl;
        cout << qp(tls(0, inv(5)), 4) << endl;*/
        init();
        cin >> k >> L >> R;
        cout << (gao(R, k) - gao(L - 1, k) + mod) % mod << endl;
        return 0;
    }
    
    
  • 相关阅读:
    .net core ELK
    mongodb基础
    .net core FluentValidation
    使用Identity Server 4建立Authorization Server
    .net core JWT应用
    .net core action过滤器的普通应用
    matplotlib
    python-13:文件操作 之二
    python-13:文件操作 open
    python-12:内置 函数之一 filter map sorted reduce
  • 原文地址:https://www.cnblogs.com/zhugezy/p/10969998.html
Copyright © 2020-2023  润新知