• HDU-4742 Pinball Game 3D 三维LIS


      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4742

      题意:求3维的LIS。。

      用分治算法搞得,参考了cxlove的题解。。

      首先按照x排序,然后每个三元组一个编号1-n。接下来只要考虑y和z的值,假设[l,mid]区间已经求好,那么我们对[l,r]区间按照y排序,更新[mid+1,r]区间的最优值时,只要考虑z值了,用树状数组维护z的最长LIS,遇到[mid+1,r]区间的就更新。

      1 //STATUS:C++_AC_1750MS_5348KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //#pragma comment(linker,"/STACK:102400000,102400000")
     25 //using namespace __gnu_cxx;
     26 //define
     27 #define pii pair<int,int>
     28 #define mem(a,b) memset(a,b,sizeof(a))
     29 #define lson l,mid,rt<<1
     30 #define rson mid+1,r,rt<<1|1
     31 #define PI acos(-1.0)
     32 //typedef
     33 typedef __int64 LL;
     34 typedef unsigned __int64 ULL;
     35 //const
     36 const int N=100010;
     37 const int INF=0x3f3f3f3f;
     38 const int MOD=100000,STA=8000010;
     39 const LL LNF=1LL<<60;
     40 const double EPS=1e-8;
     41 const double OO=1e15;
     42 const int dx[4]={-1,0,1,0};
     43 const int dy[4]={0,1,0,-1};
     44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     45 //Daily Use ...
     46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     56 //End
     57 
     58 struct Node{
     59     int x,y,z,id;
     60     bool operator <(const Node& a)const{
     61         return x!=a.x?x<a.x:(y!=a.y?y<a.y:z<a.z);
     62     }
     63 }a[N],b[N];
     64 pii f[N],bit[N];
     65 int z[N];
     66 int T,n,m;
     67 
     68 #define lowbit(x) (x&-x)
     69 
     70 inline void update(pii& a,pii& b)
     71 {
     72     if(b.first>a.first)a=b;
     73     else if(b.first==a.first){
     74         a.second+=b.second;
     75     }
     76 }
     77 
     78 inline void add(int x,pii& b)
     79 {
     80     for(;x<=m;x+=lowbit(x)){
     81         update(bit[x],b);
     82     }
     83 }
     84 
     85 inline pii query(int x)
     86 {
     87     pii ret=make_pair(0,0);
     88     for(;x>0;x-=lowbit(x)){
     89         update(ret,bit[x]);
     90     }
     91     return ret;
     92 }
     93 
     94 inline void clear(int x)
     95 {
     96     for(;x<=m;x+=lowbit(x)){
     97         bit[x]=make_pair(0,0);
     98     }
     99 }
    100 
    101 void solve(int l,int r)
    102 {
    103     if(l==r)return;
    104     int i,j,k,mid,cnt=0;
    105     mid=(l+r)>>1;
    106     solve(l,mid);
    107     for(i=l;i<=r;i++){
    108         b[cnt]=a[i];
    109         b[cnt++].x=0;
    110     }
    111     sort(b,b+cnt);
    112     for(i=0;i<cnt;i++){
    113         if(b[i].id<=mid){
    114             add(b[i].z,f[b[i].id]);
    115         }
    116         else {
    117             pii t=query(b[i].z);
    118             t.first++;
    119             update(f[b[i].id],t);
    120         }
    121     }
    122     for(i=0;i<cnt;i++){
    123         if(b[i].id<=mid)
    124             clear(b[i].z);
    125     }
    126     solve(mid+1,r);
    127 }
    128 
    129 int main()
    130 {
    131   //  freopen("in.txt","r",stdin);
    132     int i,j;
    133     pii ans;
    134     scanf("%d",&T);
    135     while(T--)
    136     {
    137         scanf("%d",&n);
    138         for(i=0;i<n;i++){
    139             scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
    140             z[i]=a[i].z;
    141         }
    142 
    143         sort(a,a+n);
    144         sort(z,z+n);
    145         m=unique(z,z+n)-z;
    146         for(i=0;i<n;i++){
    147             f[i]=make_pair(1,1);
    148             a[i].id=i;
    149             a[i].z=lower_bound(z,z+m,a[i].z)-z+1;
    150         }
    151         solve(0,n-1);
    152         ans=make_pair(0,0);
    153         for(i=0;i<n;i++){
    154             update(ans,f[i]);
    155         }
    156 
    157         printf("%d %d
    ",ans.first,ans.second);
    158     }
    159     return 0;
    160 }
  • 相关阅读:
    Sublime 设置移动光标快捷键
    Reverse Linked List II
    Reverse Nodes in K-Group
    Sort Colors
    Swap Nodes in Pairs
    Intersection of Two Linked Lists
    Word Break
    Unique Binary Search Tree
    Maximal Square
    Happy Number
  • 原文地址:https://www.cnblogs.com/zhsl/p/3343833.html
Copyright © 2020-2023  润新知