用JOINs进行多表联合查询
但是在现实数据库中往往包含一组相关的数据表,这些表一般会符合数据库范式(normalization)[1]. 让我们先了解下关系数据库的范式
数据库范式(normalization)
数据库范式是数据表设计的规范,在范式规范下,数据库里每个表存储的重复数据降到最少(这有助于数据的一致性维护),同时在数据库范式下,表和表之间不再有很强的数据耦合,可以独立的增长 (ie. 比如汽车引擎的增长和汽车的增长是完全独立的). 范式带来了很多好处,但随着数据表的分离,意味着我们要查询多个数据属性时,需要更复杂的SQL语句,也就是本节开始介绍的多表连接技术。这样SQL的性能也会面临更多的挑战,特别是当大数据量的表很多的情况下.
如果一个实体(比如Dog)的属性数据被分散到多个数据表中,我们就需要学习如何通过 JOIN
连表技术来整合这些数据并找到我们想要查询的数据项.
主键:
主键(primary key)
, 一般关系数据表中,都会有一个属性列设置为 主键(primary key)
。主键是唯一标识一条数据的,不会重复复(想象你的身份证号码)。一个最常见的主键就是auto-incrementing integer(自增ID,每写入一行数据ID+1, 当然字符串,hash值等只要是每条数据是唯一的也可以设为主键.
借助主键(primary key)
(当然其他唯一性的属性也可以),我们可以把两个表中具有相同 主键ID的数据连接起来(因为一个ID可以简要的识别一条数据,所以连接之后还是表达的同一条数据)(你可以想象一个左右连线游戏)。具体我们用到 JOIN
关键字。我们先来学习 INNER JOIN
.
多表联合句式:
SELECT column, another_table_column, … FROM mytable (主表)
INNER JOIN another_table (要连接的表)
ON mytable.id = another_table.id (想象一下刚才讲的主键连接,两个相同的连成1条)
WHERE condition(s) ORDER BY column, … ASC/DESC LIMIT num_limit OFFSET num_offset;
实战:
有两个电影表,电影信息表格Movies , BoxOffice 存储着市场相关的信息
Table: Movies
Id | Title | Director | Year | Length_minutes |
1 | Toy Story | John Lasseter | 1995 | 81 |
2 | A Bug's Life | John Lasseter | 1998 | 95 |
3 | Toy Story 2 | John Lasseter | 1999 | 93 |
4 | Monsters, Inc. | Pete Docter | 2001 | 92 |
5 | Finding Nemo | Finding Nemo | 2003 | 107 |
6 | The Incredibles | Brad Bird | 2004 | 116 |
7 | Cars | John Lasseter | 2006 | 117 |
8 | Ratatouille | Brad Bird | 2007 | 115 |
9 | WALL-E | Andrew Stanton | 2008 | 104 |
10 | Up | Pete Docter | 2009 | 101 |
11 | Toy Story 3 | Lee Unkrich | 2010 | 103 |
12 | Cars 2 | John Lasseter | 2011 | 120 |
13 | Brave | Brenda Chapman | 2012 | 102 |
14 | Monsters University | Dan Scanlon | 2013 | 110 |
Table: Boxoffice
Movie_id | Rating | Domestic_sales | International_sales |
5 | 8.2 | 380843261 | 555900000 |
14 | 7.4 | 268492764 | 475066843 |
8 | 8 | 206445654 | 417277164 |
12 | 6.4 | 191452396 | 368400000 |
3 | 7.9 | 245852179 | 239163000 |
6 | 8 | 261441092 | 370001000 |
9 | 8.5 | 223808164 | 297503696 |
11 | 8.4 | 415004880 | 648167031 |
1 | 8.3 | 191796233 | 170162503 |
7 | 7.2 | 244082982 | 217900167 |
10 | 8.3 | 293004164 | 438338580 |
4 | 8.1 | 289916256 | 272900000 |
2 | 7.2 | 162798565 | 200600000 |
13 | 7.2 | 237283207 | 301700000 |
任务:
1.找到所有电影的线下Domestic_sales
和线上销售额
SELECT * FROM Movies inner join Boxoffice on Movies.id=Boxoffice.Movie_id
2.找到所有线上销售额比线下销售大的电影
SELECT * FROM Movies inner join Boxoffice on Movies.id=Boxoffice.Movie_id where Boxoffice.International_sales>Boxoffice.Domestic_sales
3.找出所有电影按市场占有率rating
倒序排列
SELECT * FROM Movies inner join Boxoffice on Movies.id=Boxoffice.Movie_id order by Boxoffice.rating desc
4.每部电影按线上销售额比较,排名最靠前的导演是谁,线上销量多少
SELECT movies.Director,Boxoffice.International_sales FROM Movies inner join Boxoffice on Movies.id=Boxoffice.Movie_id order by Boxoffice.International_sales desc limit 1