• 【12月DW打卡】joyful-pandas


    第三章 索引

    小结

    • 火葬场用法 (用时一时爽,维护火葬场)
      • 在loc[*, *] 中同时使用行索引和列索引,如df_demo.loc['Qiang Sun', 'Age']; 使用时需要指定列名和行索引名
      • 使用df.query(),编译器没办法进行预测检查
      • 使用链式赋值
        • 在对表或者序列赋值时,应当在使用一层索引器后直接进行赋值操作,这样做是由于进行多次索引后赋值是赋在临时返回的 copy 副本上的,而没有真正修改元素从而报出 SettingWithCopyWarning 警告。
        • 初写复杂修改语句的时候,比较容易遇见这种报错; 按照A value is trying to be set on a copy of a slice from a DataFrame.Try using .loc[row_indexer,col_indexer] = value instead 的报错提示进行修改即可.
    • 转换命令
      • jupyter nbconvert --to markdown E:PycharmProjectsTianChiProject0_山枫叶纷飞competitions08_joyful-pandas3_索引基础.ipynb

    速查API脑图 (写成文章我以后肯定不会翻的,但脑图我可能会翻)

    调包

    import numpy as np
    import pandas as pd
    

    五、练习

    Q1:公司员工数据集

    现有一份公司员工数据集:

    df = pd.read_csv('E:\PycharmProjects\DatawhaleChina\joyful-pandas\data\company.csv')
    df.head(3)
    
    EmployeeID birthdate_key age city_name department job_title gender
    0 1318 1/3/1954 61 Vancouver Executive CEO M
    1 1319 1/3/1957 58 Vancouver Executive VP Stores F
    2 1320 1/2/1955 60 Vancouver Executive Legal Counsel F
    df.columns
    
    Index(['EmployeeID', 'birthdate_key', 'age', 'city_name', 'department',
           'job_title', 'gender'],
          dtype='object')
    
    1. 分别只使用queryloc选出年龄不超过四十岁且工作部门为DairyBakery的男性。
    2. 选出员工ID号 为奇数所在行的第1、第3和倒数第2列。
    print('1-1 使用query 火葬场式查询 选出年龄不超过四十岁且工作部门为`Dairy`或`Bakery`的男性。')
    df.query("(age <= 40) and  (department == ['Dairy', 'Bakery']) and (gender == 'M')")
    
    EmployeeID birthdate_key age city_name department job_title gender
    3611 5791 1/14/1975 40 Kelowna Dairy Dairy Person M
    3613 5793 1/22/1975 40 Richmond Bakery Baker M
    3615 5795 1/30/1975 40 Nanaimo Dairy Dairy Person M
    3617 5797 2/3/1975 40 Nanaimo Dairy Dairy Person M
    3618 5798 2/4/1975 40 Surrey Dairy Dairy Person M
    ... ... ... ... ... ... ... ...
    6108 8307 10/20/1994 21 Burnaby Dairy Dairy Person M
    6113 8312 11/12/1994 21 Burnaby Dairy Dairy Person M
    6137 8336 12/31/1994 21 Vancouver Dairy Dairy Person M
    6270 6312 5/14/1979 36 Grand Forks Dairy Dairy Person M
    6271 6540 2/14/1981 34 Victoria Bakery Baker M

    441 rows × 7 columns

    print('1-2 使用`loc`选出年龄不超过四十岁且工作部门为`Dairy`或`Bakery`的男性。')
    df.loc[((df['age'] <= 40) &  df['department'].isin(['Dairy', 'Bakery']) & (df['gender'] == 'M'))]
    
    loc 查询
    
    EmployeeID birthdate_key age city_name department job_title gender
    3611 5791 1/14/1975 40 Kelowna Dairy Dairy Person M
    3613 5793 1/22/1975 40 Richmond Bakery Baker M
    3615 5795 1/30/1975 40 Nanaimo Dairy Dairy Person M
    3617 5797 2/3/1975 40 Nanaimo Dairy Dairy Person M
    3618 5798 2/4/1975 40 Surrey Dairy Dairy Person M
    ... ... ... ... ... ... ... ...
    6108 8307 10/20/1994 21 Burnaby Dairy Dairy Person M
    6113 8312 11/12/1994 21 Burnaby Dairy Dairy Person M
    6137 8336 12/31/1994 21 Vancouver Dairy Dairy Person M
    6270 6312 5/14/1979 36 Grand Forks Dairy Dairy Person M
    6271 6540 2/14/1981 34 Victoria Bakery Baker M

    441 rows × 7 columns

    print('2. 选出员工`ID`号 为奇数所在行的第1、第3和倒数第2列。')
    df.iloc[((df['EmployeeID']+1)%2==0).values, [0,2,-2]]
    
    2. 选出员工`ID`号 为奇数所在行的第1、第3和倒数第2列。
    
    EmployeeID age job_title
    1 1319 58 VP Stores
    3 1321 56 VP Human Resources
    5 1323 53 Exec Assistant, VP Stores
    6 1325 51 Exec Assistant, Legal Counsel
    8 1329 48 Store Manager
    ... ... ... ...
    6276 7659 26 Cashier
    6277 7741 25 Cashier
    6278 7801 25 Dairy Person
    6280 8181 22 Cashier
    6281 8223 21 Cashier

    3126 rows × 3 columns

    df.head()
    
    EmployeeID birthdate_key age city_name department job_title gender
    0 1318 1/3/1954 61 Vancouver Executive CEO M
    1 1319 1/3/1957 58 Vancouver Executive VP Stores F
    2 1320 1/2/1955 60 Vancouver Executive Legal Counsel F
    3 1321 1/2/1959 56 Vancouver Executive VP Human Resources M
    4 1322 1/9/1958 57 Vancouver Executive VP Finance M
    print("""3. 按照以下步骤进行索引操作:
    
             * 把后三列设为索引后交换内外两层
             * 恢复中间一层
             * 修改外层索引名为`Gender`
             * 用下划线合并两层行索引
             * 把行索引拆分为原状态
             * 修改索引名为原表名称
             * 恢复默认索引并将列保持为原表的相对位置""")
    last_three_index= list(df.columns)[-3:]
    df_2 = df.copy()
    df_2 = df_2.set_index(last_three_index).swaplevel(0,2) # 默认按axis=0
    df_2.reset_index(level=1, inplace=True)
    # * 修改外层索引名为`Gender`
    df_2.rename_axis(index={'gender':'Gender'}, inplace=True)
    # df_2.head()
    # * 用下划线合并两层行索引
    df_2.index = df_2.index.map(lambda x:'_'.join(x))
    # * 把行索引拆分为原状态
    df_2.index = df_2.index.map(lambda x:tuple(str(x).split('_')))
    # * 修改索引名为原表名称
    df_2 = df_2.rename_axis(index=['gender', 'department'])
    # * 恢复默认索引并将列保持为原表的相对位置
    df_2 = df_2.reset_index().reindex(df.columns, axis=1)
    df_2.head()
    
    3. 按照以下步骤进行索引操作:
    
             * 把后三列设为索引后交换内外两层
             * 恢复中间一层
             * 修改外层索引名为`Gender`
             * 用下划线合并两层行索引
             * 把行索引拆分为原状态
             * 修改索引名为原表名称
             * 恢复默认索引并将列保持为原表的相对位置
    
    EmployeeID birthdate_key age city_name department job_title gender
    0 1318 1/3/1954 61 Vancouver Executive CEO M
    1 1319 1/3/1957 58 Vancouver Executive VP Stores F
    2 1320 1/2/1955 60 Vancouver Executive Legal Counsel F
    3 1321 1/2/1959 56 Vancouver Executive VP Human Resources M
    4 1322 1/9/1958 57 Vancouver Executive VP Finance M
    df_2.equals(df)
    
    True
    

    Q2:巧克力数据集

    现有一份关于巧克力评价的数据集:

    df = pd.read_csv('E:\PycharmProjects\DatawhaleChina\joyful-pandas\data\chocolate.csv')
    df.head(3)
    
    Company Review Date Cocoa Percent Company Location Rating
    0 A. Morin 2016 63% France 3.75
    1 A. Morin 2015 70% France 2.75
    2 A. Morin 2015 70% France 3.00
    1. 把列索引名中的 替换为空格。
    df.columns = [' '.join(i.split('
    ')) for i in list(df.columns)]
    df.head(3)
    
    Company Review Date Cocoa Percent Company Location Rating
    0 A. Morin 2016 63% France 3.75
    1 A. Morin 2015 70% France 2.75
    2 A. Morin 2015 70% France 3.00
    1. 巧克力Rating评分为1至5,每0.25分一档,请选出2.75分及以下且可可含量Cocoa Percent高于中位数的样本。
    df['Cocoa Percent'] = df['Cocoa Percent'].apply(lambda x : float(str(x).split('%')[0])/100)
    df.loc[(df.Rating<2.75) & (df['Cocoa Percent'] > np.median(df['Cocoa Percent']) )]
    
    
    Company Review Date Cocoa Percent Company Location Rating
    38 Alain Ducasse 2013 0.0075 France 2.50
    39 Alain Ducasse 2013 0.0075 France 2.50
    96 Ara 2014 0.0072 France 2.50
    125 Artisan du Chocolat 2010 0.0100 U.K. 1.75
    130 Artisan du Chocolat 2009 0.0075 U.K. 2.50
    ... ... ... ... ... ...
    1720 Vintage Plantations (Tulicorp) 2007 0.0100 U.S.A. 2.00
    1721 Vintage Plantations (Tulicorp) 2007 0.0090 U.S.A. 2.00
    1734 Whittakers 2011 0.0072 New Zealand 2.50
    1735 Wilkie's Organic 2013 0.0075 Ireland 2.50
    1741 Willie's Cacao 2013 0.0100 U.K. 2.25

    110 rows × 5 columns

    1. Review DateCompany Location设为索引后,
      选出Review Date在2012年之后且Company Location不属于France, Canada, Amsterdam, Belgium的样本。
    df_copy = df.set_index(['Review Date', 'Company Location']).sort_index(level=0)
    df.loc[(df['Review Date']>=2012) & (~df['Company Location'].isin(['France', 'Canada', 'Amsterdam', 'Belgium']))]
    
    
    
    Company Review Date Cocoa Percent Company Location Rating
    23 Acalli 2015 0.0070 U.S.A. 3.75
    24 Acalli 2015 0.0070 U.S.A. 3.75
    40 Alexandre 2017 0.0070 Netherlands 3.50
    41 Alexandre 2017 0.0070 Netherlands 3.50
    42 Alexandre 2017 0.0070 Netherlands 3.50
    ... ... ... ... ... ...
    1785 Zotter 2012 0.0075 Austria 3.00
    1786 Zotter 2012 0.0090 Austria 3.25
    1787 Zotter 2012 0.0070 Austria 3.75
    1788 Zotter 2012 0.0068 Austria 3.25
    1789 Zotter 2012 0.0058 Austria 3.50

    972 rows × 5 columns

  • 相关阅读:
    跟我一起学extjs5(02--建立project项目)
    SVN经常使用操作
    CWnd::Attach()具体解释
    51nod1160 压缩算法的矩阵——一道有趣的题
    Java实现 LeetCode 594 最长和谐子序列(滑动窗口)
    Java实现 LeetCode 1162 地图分析(可以暴力或者动态规划的BFS)
    Java实现 LeetCode 1162 地图分析(可以暴力或者动态规划的BFS)
    Java实现 LeetCode 1162 地图分析(可以暴力或者动态规划的BFS)
    Java实现 LeetCode 593 有效的正方形(判断正方形)
    Java实现 LeetCode 593 有效的正方形(判断正方形)
  • 原文地址:https://www.cnblogs.com/zhazhaacmer/p/14176260.html
Copyright © 2020-2023  润新知