In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.
Finally print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8 10 15 9 10 28 34 10 28 12 56 Not Heap
思路:
1、由于输入是层序遍历,且是完全二叉树,所以使用一个数组存储树,根节点下标为1,这样i是根节点,2*i是左孩子,2*i+1是
右孩子。然后按照先右子树再左子树的顺序遍历树,并且存储遍历路径,当遇到叶子结点时候输出。
2、由于题目中给出的结点数目N满足1<N<=1,000,所以在遍历之前先使用第一个结点和第二个结点进行比较,做一个预判断,根据判断
结果,假设其为max heap或者min heap。再输出路径的时候再判断与假设是否一致即可,详情请看代码。
#include<iostream> #include<vector> #include<algorithm> #include<queue> #include<string> #include<map> #include<set> using namespace std; bool flag=true; vector<int> path; //对树进行深度遍历 void print(int tree[],int i,int n,bool isBig) { //cout<<i<<" "; path.push_back(tree[i]); //cout<<tree[i]<<endl; if(2*i>n) { if(isBig) { // cout<<endl; if(path.size()>0) cout<<path[0]; for(int j=1; j<path.size(); j++) { if(path[j]>path[j-1]) flag=false; cout<<" "<<path[j]; } cout<<endl; } else { if(path.size()>0) cout<<path[0]; for(int j=1; j<path.size(); j++) { if(path[j]<path[j-1]) flag=false; cout<<" "<<path[j]; } cout<<endl; } return; } if(2*i+1<=n) { print(tree,2*i+1,n,isBig); path.pop_back(); } if(2*i<=n) { print(tree,2*i,n,isBig); path.pop_back(); } } int main() { int n; scanf("%d",&n); int tree[n+1]; for(int i=1; i<=n; i++) { scanf("%d",&tree[i]); // cout<<tree[i]<<endl; } // path.push_back(tree[1]); if(tree[1]<tree[2])//如果是min heap,则父节点小 { print(tree,1,n,false); if(flag) cout<<"Min Heap"<<endl; else cout<<"Not Heap"<<endl; } else { print(tree,1,n,true); if(flag) cout<<"Max Heap"<<endl; else cout<<"Not Heap"<<endl; } return 0; }