• Codeforces Round #521 (Div. 3) D. Cutting Out


    D. Cutting Out

    time limit per test

    3 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    You are given an array ss consisting of nn integers.

    You have to find any array tt of length kk such that you can cut out maximum number of copies of array tt from array ss.

    Cutting out the copy of tt means that for each element titi of array tt you have to find titi in ss and remove it from ss. If for some titi you cannot find such element in ss, then you cannot cut out one more copy of tt. The both arrays can contain duplicate elements.

    For example, if s=[1,2,3,2,4,3,1]s=[1,2,3,2,4,3,1] and k=3k=3 then one of the possible answers is t=[1,2,3]t=[1,2,3]. This array tt can be cut out 22 times.

    • To cut out the first copy of tt you can use the elements [1,2––,3,2,4,3––,1––][1,2_,3,2,4,3_,1_] (use the highlighted elements). After cutting out the first copy of tt the array ss can look like [1,3,2,4][1,3,2,4].
    • To cut out the second copy of tt you can use the elements [1––,3––,2––,4][1_,3_,2_,4]. After cutting out the second copy of tt the array ss will be [4][4].

    Your task is to find such array tt that you can cut out the copy of tt from ss maximum number of times. If there are multiple answers, you may choose any of them.

    Input

    The first line of the input contains two integers nn and kk (1≤k≤n≤2⋅1051≤k≤n≤2⋅105) — the number of elements in ss and the desired number of elements in tt, respectively.

    The second line of the input contains exactly nn integers s1,s2,…,sns1,s2,…,sn (1≤si≤2⋅1051≤si≤2⋅105).

    Output

    Print kk integers — the elements of array tt such that you can cut out maximum possible number of copies of this array from ss. If there are multiple answers, print any of them. The required array tt can contain duplicate elements. All the elements of tt (t1,t2,…,tkt1,t2,…,tk) should satisfy the following condition: 1≤ti≤2⋅1051≤ti≤2⋅105.

    Examples

    input

    Copy

    7 3
    1 2 3 2 4 3 1
    

    output

    Copy

    1 2 3 
    

    input

    Copy

    10 4
    1 3 1 3 10 3 7 7 12 3
    

    output

    Copy

    7 3 1 3
    

    input

    Copy

    15 2
    1 2 1 1 1 2 1 1 2 1 2 1 1 1 1
    

    output

    Copy

    1 1 
    

    Note

    The first example is described in the problem statement.

    In the second example the only answer is [7,3,1,3][7,3,1,3] and any its permutations. It can be shown that you cannot choose any other array such that the maximum number of copies you can cut out would be equal to 22.

    In the third example the array tt can be cut out 55 times.

    简单 贪心 + 二分

    /*
        Zeolim - An AC a day keeps the bug away
    */
    
    //pragma GCC optimize(2)
    #include <cstdio>
    #include <iostream>
    #include <cstdlib>
    #include <cmath>
    #include <cctype>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <set>
    #include <sstream>
    #include <map>
    #include <ctime>
    #include <vector>
    #include <fstream>
    #include <list>
    #include <iomanip>
    #include <numeric>
    using namespace std;
    typedef long long ll;
    
    const int MAXN = 1e6 + 10;
    
    int n, k; 
    
    int arr[MAXN] = {0};
    
    struct node
    {
        int num, cot;
    
    }brr[MAXN];
    
    bool cmp(node a, node b)
    {
        return a.cot > b.cot;
    }
    
    int pos = -1;
    
    bool judge(int x)
    {
        int ret = 0;
    
        for(int i = 0; i < pos; i++)
        {
            if(brr[i].cot < x)
                break;
            else
            {
                ret += brr[i].cot / x;
            }
        }
    
        return ret >= k;
    }
    
    int main()
    {
        //ios::sync_with_stdio(false);
        //cin.tie(0);     cout.tie(0);
        //freopen("D://test.in", "r", stdin);
        //freopen("D://test.out", "w", stdout);
        
        cin>>n>>k;
    
        for(int i = 1; i <= n; i++)
            cin>>arr[i];
    
        sort(arr + 1, arr + n + 1);
    
        for(int i = 1; i <= n; i++)
        {
            if(arr[i] != arr[i - 1])
            {
                pos++;
                brr[pos].num = arr[i];
                brr[pos].cot = 1;
            }
            else
            {
                brr[pos].cot++;
            }
        }
        
        pos++;
    
        sort(brr, brr + pos, cmp);
        
        int fst = 1, lst = 0x3f3f3f3f;
    
        for(int i = 0; i < 100; i++)
        {
            int mid = (fst + lst) / 2;
    
            if(judge(mid))
                fst = mid;
            else
                lst = mid;
        }
        
        while(judge(fst + 1))
        {
        	fst++;
    	}
    	
        int flag = 0;
        
    	for(int i = 0; i < pos; i++)
    	{
    		int x = brr[i].cot / fst;
    		while(x--)
    		{
    			printf("%d ", brr[i].num);
    			flag++;
    			
    			if(flag == k)
    			goto l1;
    		}
    	}
    	l1:
        
        return 0;
    }
  • 相关阅读:
    7、python数据类型之集合set
    python基本数据类型练习
    matplotlib
    numpy常用函数
    pillow包
    keras-tensorflow版本对应
    python-激活和切换运行环境
    端口监控
    numpy
    低风险创业笔记
  • 原文地址:https://www.cnblogs.com/zeolim/p/12270411.html
Copyright © 2020-2023  润新知