• kvm磁盘io优化以及性能测试以及与物理机对比


    ubuntu下kvm的磁盘io性能优化步骤

    1、virsh shutdown wcltest2

    2、virsh edit wcltest2

    <driver name='qemu' type='qcow2'/>
          <source file='/kvm-data/kvm/wcltest2_os_disk.qcow2'/>
          <backingStore/>
          <target dev='hda' bus='ide'/>
          <alias name='ide0-0-0'/>
          <address type='drive' controller='0' bus='0' target='0' unit='0'/>

     磁盘优化:

    <driver name='qemu' type='qcow2' cache='none' io='native'/>
    <target dev='vda' bus='virtio'/>
     同时删除
    <address type='drive' controller='0' bus='0' target='0' unit='0'/>
    

    3、ubuntu下安装sysbench1.0

    wget https://github.com/akopytov/sysbench/archive/1.0.zip -O "sysbench-1.0.zip"
    unzip sysbench-1.0.zip
    apt-get install automake -y
    apt-get install libtool -y
    ./autogen.sh
    ./configure --without-mysql
    备注( --without-mysql 不编译测试mysql的相关环境)
    make
    make install

    4、io测试随机读写

    sysbench --test=fileio --num-threads=50 --file-total-size=2G --file-test-mode=rndrw prepare  准备测试
    sysbench --test=fileio --num-threads=50 --file-total-size=2G --file-test-mode=rndrw run      开始测试
    sysbench --test=fileio --num-threads=50 --file-total-size=2G --file-test-mode=rndrw cleanup  清除测试文件
    

     物理机执行结果:

    File operations:
        reads/s:                      469.90
        writes/s:                     312.81
        fsyncs/s:                     1000.35
    
    Throughput:
        read, MiB/s:                  7.34
        written, MiB/s:               4.89
    
    General statistics:
        total time:                          10.1041s
        total number of events:              18024
    
    Latency (ms):
             min:                                    0.00
             avg:                                   27.86
             max:                                 1047.11
             95th percentile:                      153.02
             sum:                               502103.21
    
    Threads fairness:
        events (avg/stddev):           360.4800/49.51
        execution time (avg/stddev):   10.0421/0.03
    

     kvm优化前执行结果:File operations:

        reads/s:                      243.34
        writes/s:                     162.23
        fsyncs/s:                     513.40
    
    Throughput:
        read, MiB/s:                  3.80
        written, MiB/s:               2.53
    
    General statistics:
        total time:                          10.1048s
        total number of events:              9290
    
    Latency (ms):
             min:                                    0.00
             avg:                                   54.13
             max:                                  769.09
             95th percentile:                      297.92
             sum:                               502877.36
    
    Threads fairness:
        events (avg/stddev):           185.8000/65.60
        execution time (avg/stddev):   10.0575/0.02
    

     kvm优化后结果:

    File operations:
        reads/s:                      438.57
        writes/s:                     289.51
        fsyncs/s:                     911.55
    
    Throughput:
        read, MiB/s:                  6.85
        written, MiB/s:               4.52
    
    General statistics:
        total time:                          10.1056s
        total number of events:              16577
    
    Latency (ms):
             min:                                    0.01
             avg:                                   30.30
             max:                                  311.64
             95th percentile:                      123.28
             sum:                               502289.90
    
    Threads fairness:
        events (avg/stddev):           331.5400/28.37
        execution time (avg/stddev):   10.0458/0.02
    

     结论:

    kvm优化的io随机读写性能达到接近物理机的磁盘io性能

  • 相关阅读:
    【Blazor】在ASP.NET Core中使用Blazor组件
    Github和Azure DevOps的代码同步
    【.NET Core】在Win10中用VS Code debug
    【UWP】利用EF Core操作SQLite
    【ASP.NET Core】mdl conflicts with tinymce
    【Windows10】如何使用Segoe MDL2 Assets图标
    Docker安装及使用,Docker 安装MySQL、安装Tomcat、安装RabbitMQ
    Anaconda安装常用配置及命令
    MySQL获取周、月、天日期,生成排序号
    Linux常用查询命令
  • 原文地址:https://www.cnblogs.com/wclwcw/p/8535001.html
Copyright © 2020-2023  润新知