• P2522 [HAOI2011]Problem b


    Problem bProblem b


    Descriptionmathcal{Description}
    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。


    最初想法
    Ans=i=1bkj=1dk[gcd(i,j)=k]i=1a1kj=1dk[gcd(i,j)=k]i=1bkj=1c1k[gcd(i,j)=k]+i=1a1kj=1c1k[gcd(i,j)=k]Ans=sum_{i=1}^{lfloor frac{b}{k} floor}sum_{j=1}^{lfloor frac{d}{k} floor}[gcd(i,j)=k]- sum_{i=1}^{lfloor frac{a-1}{k} floor}sum_{j=1}^{lfloor frac{d}{k} floor} [ gcd(i,j)=k ] - sum_{i=1}^{lfloor frac{b}{k} floor}sum_{j=1}^{lfloor frac{c-1}{k} floor} [ gcd(i,j)=k ] + sum_{i=1}^{lfloor frac{a-1}{k} floor}sum_{j=1}^{lfloor frac{c-1}{k} floor} [ gcd(i,j)=k ]

    但是要使用 莫比乌斯反演, 于是回去学习…


    正解部分
    NN 年过后… 莫比乌斯反演学会了.
    click here
    这里不再赘述 .


    实现部分

    #include<cstdio>
    #include<algorithm>
    #define reg register
    
    const int maxn = 50005;
    
    int prime_num;
    int mu[maxn];
    int mu_sum[maxn];
    int prime[maxn];
    
    bool is_prime[maxn];
    
    void sieve(){
            prime_num = 0, mu[1] = 1;
            for(reg int i = 2; i < maxn; i ++){
                    if(!is_prime[i]) prime[++ prime_num] = i, mu[i] = -1;
                    for(reg int j = 1; j <= prime_num && i*prime[j] < maxn; j ++){
                            int t = i*prime[j];
                            is_prime[t] = 1;
                            if(i%prime[j] == 0){ mu[t] = 0; break ; }
                            mu[t] = -mu[i];
                    }
            }
            for(reg int i = 1; i < maxn; i ++) mu_sum[i] = mu_sum[i-1] + mu[i];
    }
    
    int Calc(int n, int m){
            int lim = std::min(n, m), s = 0;
            for(reg int l = 1, r; l <= lim; l = r+1){
                    r = std::min(n/(n/l), m/(m/l));
                    s += (mu_sum[r] - mu_sum[l-1]) * (n/l) * (m/l);
            }
            return s;
    }
    
    void Work(){
            int a, b, c, d, k;
            scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
            int Ans = Calc(b/k, d/k) - Calc((a-1)/k, d/k) - Calc(b/k, (c-1)/k) + Calc((a-1)/k, (c-1)/k);
            printf("%d
    ", Ans);
    }
    
    int main(){
            sieve();
            int T;
            scanf("%d", &T);
            while(T --) Work();
            return 0;
    }
    
  • 相关阅读:
    CodeForces 906D (欧拉降幂)
    洛谷4139 bzoj 3884 上帝与集合的正确用法
    The Preliminary Contest for ICPC Asia Nanjing 2019ICPC南京网络赛
    主席树之初见
    HDU 6709“Fishing Master”(贪心+优先级队列)
    [数论]拓展中国剩余定理
    [数论] 求逆元
    2019 年百度之星·程序设计大赛
    2019 年百度之星·程序设计大赛
    pb_ds中的hash_table
  • 原文地址:https://www.cnblogs.com/zbr162/p/11822561.html
Copyright © 2020-2023  润新知