• 51nod 1174 区间最大值(RMQ and 线段树)


    给出一个有N个数的序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,最大的数是多少。

    例如: 1 7 6 3 1。i = 1, j = 3,对应的数为7 6 3,最大的数为7。(该问题也被称为RMQ问题)
     
    Input
    第1行:1个数N,表示序列的长度。(2 <= N <= 10000)
    第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9)
    第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 10000)
    第N + 3 - N + Q + 2行:每行2个数,对应查询的起始编号i和结束编号j。(0 <= i <= j <= N - 1)
     
    Output
    共Q行,对应每一个查询区间的最大值。
     
    Input示例
    5
    1
    7
    6
    3
    1
    3
    0 1
    1 3
    3 4
     
    Output示例
    7
    7
    3


    首先一波RMQ概念
    RMQ算法:是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n)),查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决。

    (一)首先是预处理,用动态规划(DP)解决。

    设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)

    例如:

    A数列为:3 2 4 5 6 8 1 2 9 7

    F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;

    并且我们可以容易的看出F[i,0]就等于A[i]。(DP的初始值)

    这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。

    我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),

    (i,i+2^(j-1)-1)为一段, (i+2^(j-1),i+2^j-1)为一段(长度都为2 ^ (j - 1))     

    用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

    代码如下:

     

    1 void RMQ(int n){
    2   for(int j=1;j<20;j++)
    3     for(int i=1;i<=n;i++)
    4       if(i+(1<<j)-1<=n){
    5         maxn[i][j]=max(maxn[i][j-1],maxn[i+(1<<(j-1))][j-1]);
    6         minn[i][j]=min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]);
    7       }
    8 }

    状态转移方程的含义是:先更新所有长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得所有长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值,获得所有长度为F[i,2]即4个元素的最值,以此类推更新所有长度的最值。

    这里如果是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1开始1个元素,2个元素,4个元素,8个元素(A[0],A[1],....A[7])的最值,这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值,

    但是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这样的方法肯定是错误的。


    (二)查询

    假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)

    因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]},for example:要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2

    即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);


    ps:

    <<运算符和+-运算符的优先级

    比如这个表达式:5 - 1 << 2是多少?

    答案是:4 * 2 * 2 = 16。所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1

     

    本题代码如下:    

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 int F[10000][15],a[10000];
     4 void RMQ(int n){
     5   int i,j;
     6   for(i=1;i<=n;i++)
     7     F[i][0]=a[i];
     8     for(j=1;j<=15;j++){
     9       for(i=1;i<=n;i++)
    10         if(i+(1<<j)-1<=n){
    11             F[i][j]=max(F[i][j-1],F[i+(1<<(j-1))][j-1]);
    12         }
    13     }
    14 }
    15 int main(){
    16   ios::sync_with_stdio(false);
    17   int num,i,j,q,l,r,k;
    18   cin>>num;
    19   for(i=1;i<=num;i++) cin>>a[i];
    20   RMQ(num);
    21   cin>>q;
    22   while(q--){
    23     cin>>l>>r;
    24     l++;
    25     r++;
    26     k=log2(r-l+1);
    27     cout<<max(F[l][k],F[r-(1<<k)+1][k])<<endl;
    28   }
    29     return 0;
    30 }

     

     

     

  • 相关阅读:
    system.exit(int status)中status值不同时的区别
    Java期末复习——主观题
    JfreeChart 乱码问题处理
    数据结构期末复习——还原二叉树(根据中序和后序遍历输出先序遍历)
    数据结构期末复习——还原二叉树(根据先序和中序遍历输出先序遍历)
    数据结构期末复习——树与二叉树一些知识点
    JavaScript数据结构与算法-队列练习
    JavaScript数据结构与算法-栈练习
    JavaScript数据结构与算法-列表练习
    JavaScript数据结构与算法-数组练习
  • 原文地址:https://www.cnblogs.com/z-712/p/7625780.html
Copyright © 2020-2023  润新知