• 小记--------spark资源调度机制源码分析-----Schedule


    Master类位置所在:spark-core_2.11-2.1.0.jar的org.apache.spark.deploy.master下的Master类
    /**
    * driver调度机制原理代码分析Schedule the currently available resources among waiting apps. This method will be called
    * every time a new app joins or resource availability changes.
    */
    private def schedule(): Unit = {
     
      //首先判断,master撞他提不是ALIVE的话, 就直接返回
      //也就是说 standby master是不会进行application等资源的调度的
      if (state != RecoveryState.ALIVE) {
        return
      }
     
      // Rondom.shuffle的原理,就是对传入的集合的元素进行随机的打乱
      // 取出了workers中的所有值钱注册上来的worker,进行过滤, 必须死活状态为ALIVE的worker
      // 对状态为ALIVE的worker, 调用Random的shuffle方法进行随机的打乱
      val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE))
     
      // 获取到当前可用worker的个数
      val numWorkersAlive = shuffledAliveWorkers.size
      var curPos = 0
     
      // 只有用yarn-cluster模式提交的时候,才会注册driver,因为standalone和yarn-client模式,都会在本地直接启动driver,而不会来注册driver,更不会让master调度driver了
       
        // 首先会遍历waitingDrivers 这个ArrayBuffer 
      for (driver <- waitingDrivers.toList) { // iterate over a copy of waitingDrivers
     
        // We assign workers to each waiting driver in a round-robin fashion. For each driver, we
        // start from the last worker that was assigned a driver, and continue onwards until we have
        // explored all alive workers.
        var launched = false
        var numWorkersVisited = 0
           
         // while的条件,numWorkersVisited小于numWorkersAlive,就是说只要还有活着的worker没有被遍历到,那么就继续遍历。而且,当前这个driver还没有被启动,也就是launched为false
         while (numWorkersVisited < numWorkersAlive && !launched) {
          val worker = shuffledAliveWorkers(curPos)
          numWorkersVisited += 1
     
          // 如果当前这个worker的空闲内存量大于等于driver需要的内存
          // 并且worker的空闲CPU数量大于等于driver需要的CPU数量
          if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
     
            //那么启动driver
            launchDriver(worker, driver)//详细代码见代码1
     
            // 并且将driver从waitingDrivers队列中移除
            waitingDrivers -= driver
            launched = true
          }
        
          //然后将指针指向下一个worker
          curPos = (curPos + 1) % numWorkersAlive
        }
      }
      startExecutorsOnWorkers()
    }
     
     
    代码1
    /**
     *在某一个worker上启动driver
     */
    private def launchDriver(worker: WorkerInfo, driver: DriverInfo) {
      logInfo("Launching driver " + driver.id + " on worker " + worker.id)
     
      // 将driver加入worker内存的缓存结构中
      // 将worker内使用的内存和CPU数量,都加上driver需要的内存和CPU数量
      worker.addDriver(driver)
     
      // 同时把worker也加入到driver内部的缓存结构中  进行一个互相引用,互相能找到对方
      driver.worker = Some(worker)
     
      // 然后调用worker的线程,给它发送LaunchDriver消息,让worker来启动driver
      worker.endpoint.send(LaunchDriver(driver.id, driver.desc))
     
      // 然后将driver的状态设置为RUNNING
      driver.state = DriverState.RUNNING
    }
     
     
     
    //executor调度原理及源码分析
    /**
    * Schedule and launch executors on workers
    */
    private def startExecutorsOnWorkers(): Unit = {
     
      // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
      // in the queue, then the second app, etc.
      // 首先遍历出waitingApps中的ApplicationInfo,并且过滤出还有需要调用的core的Application
      for (app <- waitingApps if app.coresLeft > 0) {
        val coresPerExecutor: Option[Int] = app.desc.coresPerExecutor
       
         // Filter out workers that don't have enough resources to launch an executor
         // 从workers中,过滤出状态为ALIVE的,再次过滤可以被Application使用的worker,然后按照剩余CPU数量倒序排序
        val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
          .filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&
            worker.coresFree >= coresPerExecutor.getOrElse(1))
          .sortBy(_.coresFree).reverse
        val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)//详细代码见:代码2
     
     
        // Now that we've decided how many cores to allocate on each worker, let's allocate them
        // 给每个worker分配完Application要求的CPU core之后 , 遍历每个worker
        // 并且判断之前给这个worker分配到了CPU core
        for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
     
          //在Application内部缓存中添加executor
          allocateWorkerResourceToExecutors(
            app, assignedCores(pos), coresPerExecutor, usableWorkers(pos))//详细代码见:代码3
        }
      }
    }
     
    代码2
    private def scheduleExecutorsOnWorkers(
        app: ApplicationInfo,
        usableWorkers: Array[WorkerInfo],
        spreadOutApps: Boolean): Array[Int] = {
      val coresPerExecutor = app.desc.coresPerExecutor
     
      // 每个executor上最小的cores数量,默认为1
      val minCoresPerExecutor = coresPerExecutor.getOrElse(1)
      val oneExecutorPerWorker = coresPerExecutor.isEmpty
      val memoryPerExecutor = app.desc.memoryPerExecutorMB
     
    // 可用的worker数量
      val numUsable = usableWorkers.length
      val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker
      val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker
     
    // 取Application需要的core是和集群workers的空闲cores和的最小值
      var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)
     
     
      /** Return whether the specified worker can launch an executor for this app. */
    // 是否可以在一个worker上分配Executor
      def canLaunchExecutor(pos: Int): Boolean = {
        val keepScheduling = coresToAssign >= minCoresPerExecutor
        val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor
     
     
        // If we allow multiple executors per worker, then we can always launch new executors.
        // Otherwise, if there is already an executor on this worker, just give it more cores.
        val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0
     
    // 检查worker的空闲core和内存是否够用
        if (launchingNewExecutor) {
          val assignedMemory = assignedExecutors(pos) * memoryPerExecutor
          val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor
          val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit
          keepScheduling && enoughCores && enoughMemory && underLimit
        } else {
          // We're adding cores to an existing executor, so no need
          // to check memory and executor limits
    //  不检查memory和executor的限制
          keepScheduling && enoughCores
        }
      }
     
     
      // Keep launching executors until no more workers can accommodate any
      // more executors, or if we have reached this application's limits
      var freeWorkers = (0 until numUsable).filter(canLaunchExecutor)
      while (freeWorkers.nonEmpty) {
        freeWorkers.foreach { pos =>
          var keepScheduling = true
          while (keepScheduling && canLaunchExecutor(pos)) {
            // 要分配的cores
            coresToAssign -= minCoresPerExecutor
     
            // 已分配的cores
            assignedCores(pos) += minCoresPerExecutor
     
     
            // If we are launching one executor per worker, then every iteration assigns 1 core
            // to the executor. Otherwise, every iteration assigns cores to a new executor.
            // 一个worker只启动一个Executor
            if (oneExecutorPerWorker) {
              assignedExecutors(pos) = 1
            } else {
              assignedExecutors(pos) += 1
            }
     
     
            // Spreading out an application means spreading out its executors across as
            // many workers as possible. If we are not spreading out, then we should keep
            // scheduling executors on this worker until we use all of its resources.
            // Otherwise, just move on to the next worker.
            // 如果没有开启spreadOut算法,就一直在一个worker上分配,直到不能在分配为止,
            // 这个算法的意思就是,每个Application,都尽可能分配到尽量少的worker上,比如总过有10个worker,每个有10个CPU core
            // 而我们的Application总共需要20个core, 那么其实 就只用到两个worker 
            if (spreadOutApps) {
              keepScheduling = false
            }
          }
        }
        freeWorkers = freeWorkers.filter(canLaunchExecutor)
      }
      assignedCores
    }
     
     
    代码3
    //分配CPUcore的算法
    private def allocateWorkerResourceToExecutors(
        app: ApplicationInfo,
        assignedCores: Int,
        coresPerExecutor: Option[Int],
        worker: WorkerInfo): Unit = {
      // If the number of cores per executor is specified, we divide the cores assigned
      // to this worker evenly among the executors with no remainder.
      // Otherwise, we launch a single executor that grabs all the assignedCores on this worker.
      // 需要的cores / 每个executor的cores 得到真正需要启动的executor数量
      val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)
      val coresToAssign = coresPerExecutor.getOrElse(assignedCores)
      for (i <- 1 to numExecutors) {
     
        // 首先在Application内部缓存结构中,添加executors
        // 并且创建ExecutorDesc对象,其中封装了,给这个executor分配多少个CPU core
        // spark 1.3.0版本的executor启动的内部机制
        // 在spark-submit脚本中, 可以指定要多少个executor,每个executor多少个CPU,多少内存,那么基于我们的机制,实际上,最后,executor的实际数量, 以及每个executor的CPU, 可能与配置是不一样的。
        // 因为我们这里是基于总的CPU来分配的,就是说,比如要求3个executor,每个executor要3个CPU,那么
        // 当我们有9个worker,每个worker有1个CPU时,那么其实总共是要分配9个CPU core, 其实根据这种算法,会给每个worker分配一个CPU core, 然后给每个worker启动一个executor
        // 最后总过会启动9个executor ,每个executor有一个CPUcore
        // application  需要记录executor
        val exec = app.addExecutor(worker, coresToAssign)
     
        // 接着在worker上启动executor
        launchExecutor(worker, exec)// 详细代码见:代码4
     
        // 然后将Application的状态修改为RUNNING
        app.state = ApplicationState.RUNNING
      }
    }
     
    代码4
    private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = {
      logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
      
      // 将executor加入worker内部缓存中
      worker.addExecutor(exec)
     
      // 向worker发送LaunchExecutor消息
      worker.endpoint.send(LaunchExecutor(masterUrl,
        exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory))
     
      // 向executor对应的application的driver,发送executorAdded消息
      exec.application.driver.send(
        ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))
    }
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    MVC5+EF6 入门完整教程七
    MVC5+EF6 入门完整教程六
    MVC5+EF6 入门完整教程五
    MVC5+EF6 入门完整教程四
    MVC5 + EF6 完整入门教程三
    MVC5 + EF6 入门完整教程二
    MVC5 + EF6 入门完整教程
    最短路径简析
    PAT 1147 Heaps
    PAT 1146 Topological Order
  • 原文地址:https://www.cnblogs.com/yzqyxq/p/11968018.html
Copyright © 2020-2023  润新知