• poj 3613 Cow Relays


    Cow Relays
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5411   Accepted: 2153

    Description

    For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

    Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi  ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

    To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

    Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

    Input

    * Line 1: Four space-separated integers: NTS, and E
    * Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

    Output

    * Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

    Sample Input

    2 6 6 4
    11 4 6
    4 4 8
    8 4 9
    6 6 8
    2 6 9
    3 8 9

    Sample Output

    10


    n次floyd,原来flody也能够像矩阵一样高速幂。详细的能够看论文《矩阵乘法在信息学的应用》

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    const int inf=(1<<30)-1;
    int n;
    int hash[3010];//映射
    struct matrix
    {
        int ma[210][210];
        matrix()
        {
           for(int i=0;i<210;i++)
              for(int j=0;j<210;j++)
               ma[i][j]=inf;
        }
    };
    matrix floyd(matrix x,matrix y)
    {
        matrix ans;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                for(int k=1;k<=n;k++)
                ans.ma[i][j]=min(ans.ma[i][j],x.ma[i][k]+y.ma[k][j]);
            }
        }
        return ans;
    }
    matrix pow(matrix a,int m)
    {
        matrix ans;
        for(int i=1;i<=n;i++)
        ans.ma[i][i]=0;
        while(m)
        {
            if(m&1)
            ans=floyd(ans,a);
            a=floyd(a,a);
            m=m>>1;
        }
        return ans;
    }
    int main()
    {
        int k,t,s,e;
        while(~scanf("%d%d%d%d",&k,&t,&s,&e))
        {
            int x,y,d;
            memset(hash,0,sizeof(hash));
            n=1;
            matrix a;
            for(int i=0;i<t;i++)
            {
                scanf("%d%d%d",&d,&x,&y);
                if(!hash[x])
                hash[x]=n++;
                if(!hash[y])
                hash[y]=n++;
                a.ma[hash[x]][hash[y]]=a.ma[hash[y]][hash[x]]=d;
            }
            n=n-1;
            matrix ans;
            ans=pow(a,k);
            printf("%d
    ",ans.ma[hash[s]][hash[e]]);
        }
        return 0;
    }
    


  • 相关阅读:
    FFT学习笔记
    FWT(Fast Walsh Transformation)快速沃尔什变换学习笔记
    GMS2游戏开发学习历程
    [BZOJ3238][AHOI2013]差异 [后缀数组+单调栈]
    Trie树简单讲解
    自己的题
    小技巧
    编程注意事项
    构造方法
    递归
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5369652.html
Copyright © 2020-2023  润新知