一、KMP算法
解决字符串查找的问题,可以在一个字符串(S)中查找一个子串(W)出现的位置。KMP 算法把字符匹配的时间复杂度缩小到 O(m+n) ,而空间复杂度也只有O(m)。因为“暴力搜索”的方法会反复回溯主串,导致效率低下,而KMP算法可以利用已经部分匹配这个有效信息,保持主串上的指针不回溯,通过修改子串的指针,让模式串尽量地移动到有效的位置。
暴力搜索
int ViolentMatch(char* s, char* p) { int sLen = strlen(s); int pLen = strlen(p); int i = 0; int j = 0; while (i < sLen && j < pLen) { if (s[i] == p[j]) { //①如果当前字符匹配成功(即S[i] == P[j]),则i++,j++ i++; j++; } else { //②如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0 i = i - j + 1; j = 0; } } //匹配成功,返回模式串p在文本串s中的位置,否则返回-1 if (j == pLen) return i - j; else return -1; }
- 如果当前字符匹配成功(即S[i] == P[j]),则i++,j++,继续匹配下一个字符;
- 如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为0。
KMP算法
求解next数组
//优化过后的next 数组求法 void GetNextval(char* p, int next[]) { int pLen = strlen(p); next[0] = -1; int k = -1; int j = 0; while (j < pLen - 1) { //p[k]表示前缀,p[j]表示后缀 if (k == -1 || p[j] == p[k]) { ++j; ++k; //较之前next数组求法,改动在下面4行 if (p[j] != p[k]) next[j] = k; //之前只有这一行 else //因为不能出现p[j] = p[ next[j ]],所以当出现时需要继续递归,k = next[k] = next[next[k]] next[j] = next[k]; } else { k = next[k]; } } }
递归前缀索引k = next[k],就能找到长度更短的相同前缀后缀。
如果pk 跟pj 失配,下一步就是用p[next[k]] 去跟pj 继续匹配,如果p[ next[k] ]跟pj还是不匹配,则需要寻找长度更短的相同前缀后缀,即下一步用p[ next[ next[k] ] ]去跟pj匹配。此过程相当于模式串的自我匹配,所以不断的递归k = next[k],直到要么找到长度更短的相同前缀后缀,要么没有长度更短的相同前缀后缀。
KMP算法实现
int KmpSearch(char* s, char* p) { int i = 0; int j = 0; int sLen = strlen(s); int pLen = strlen(p); while (i < sLen && j < pLen) { //①如果j = -1,或者当前字符匹配成功(即S[i] == P[j]),都令i++,j++ if (j == -1 || s[i] == p[j]) { i++; j++; } else { //②如果j != -1,且当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j] //next[j]即为j所对应的next值 j = next[j]; } } if (j == pLen) return i - j; else return -1; }
next [j] = k,代表j 之前的字符串中有最大长度为k 的相同前缀后缀
- 如果j = -1,或者当前字符匹配成功(即S[i] == P[j]),都令i++,j++,继续匹配下一个字符;
- 如果j != -1,且当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j]。此举意味着失配时,模式串P相对于文本串S向右移动了j - next [j] 位。
- 换言之,当匹配失败时,模式串向右移动的位数为:失配字符所在位置 - 失配字符对应的next 值;
- 即移动的实际位数为:j - next[j],且此值大于等于1。