• Python3-ORM-Sqlalchemy


    目录:

    1. ORM介绍
    2. sqlalchemy安装
    3. sqlalchemy基本使用
    4. 多外键关联
    5. 多对多关系
    6. 表结构设计作业

    1. ORM介绍

      orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却都是关系型的,

    为了保证一致的使用习惯,通过orm将编程语言的对象模型和数据库的关系模型建立映射关系,这样我们在使用编程语言对数据库进行操作的时候可以直接使用编程语言的对象模型进行操作就可以了,

    而不用直接使用sql语言。

                                                  

    orm的优点:

    1. 隐藏了数据访问细节,“封闭”的通用数据库交互,ORM的核心。他使得我们的通用数据库交互变得简单易行,并且完全不用考虑该死的SQL语句。快速开发,由此而来。
    2. ORM使我们构造固化数据结构变得简单易行。

    缺点:

    1. 无可避免的,自动化意味着映射和关联管理,代价是牺牲性能(早期,这是所有不喜欢ORM人的共同点)。
    2. 现在的各种ORM框架都在尝试使用各种方法来减轻这块(LazyLoad,Cache),效果还是很显著的。

    2. sqlalchemy安装

      在Python中,最有名的ORM框架是SQLAlchemy。用户包括openstack\Dropbox等知名公司或应用,主要用户列表http://www.sqlalchemy.org/organizations.html#openstack

                                 

    Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

    MySQL-Python
        mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
       
    pymysql
        mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
       
    MySQL-Connector
        mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
       
    cx_Oracle
        oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
       
    更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

    安装sqlalchemy

    pip install SQLAlchemy<br><br>pip install pymysql  #由于mysqldb依然不支持py3,所以这里我们用pymysql与sqlalchemy交互

     3.sqlalchemy基本使用

    sql原生语句创建表:

    CREATE TABLE user (
        id INTEGER NOT NULL AUTO_INCREMENT,
        name VARCHAR(32),
        password VARCHAR(64),
        PRIMARY KEY (id)
    )

     orm,实现上面同样的功能,代码如下:

    第1种创建表结构的方法:

    table_structure.py

    #Author:Yun
    import sqlalchemy
    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String
    
    engine = create_engine("mysql+pymysql://root:yun258762@localhost/test_db",
                           encoding='utf-8', echo=True)
    
    Base = declarative_base()  # 生成orm基类
    
    
    class User(Base):
        __tablename__ = 'user'  # 表名
        id = Column(Integer, primary_key=True)
        name = Column(String(32))
        password = Column(String(64))
    
    
    Base.metadata.create_all(engine)  # 创建表结构
    

     懒惰连接
    当create_engine()第一次返回时,引擎实际上还没有尝试连接到数据库; 只有在第一次要求它对数据库执行任务时才会发生这种情况。

    第2种创建表结构的方法:

    #Author:Yun
    from sqlalchemy import Table, MetaData, Column, Integer, String, ForeignKey
    from sqlalchemy.orm import mapper
    from sqlalchemy import create_engine
    
    metadata = MetaData()#生成metadata类
    #创建user表,继承metadata类 
    #Engine使用Schama Type创建一个特定的结构对象
    user
    = Table('new_user', metadata, Column('id', Integer, primary_key=True), Column('name', String(50)), Column('fullname', String(50)), Column('password', String(12)) ) class User(object): def __init__(self, name, fullname, password): self.name = name self.fullname = fullname self.password = password #表元数据是使用Table构造单独创建的,然后通过mapper()函数与User类相关联 mapper(User, user) # 通过ConnectionPooling 连接数据库 engine = create_engine("mysql+pymysql://root:yun258762@localhost/test_db?charset=utf8", max_overflow=5, echo=True) # 通过Dialect执行SQL metadata.create_all(engine) #创建表结构

     事实上,我们用第1种方式创建的表就是基于第2种方式的再封装。

     表已经创建好了开始数据操作:

    增加数据:

    #Author:Yun
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    
    user_obj = table_structure.User(name="王昭君", password="123456")  # 生成你要创建的数据对象
    user_obj2 = table_structure.User(name="韩信", password="123456")  # 生成你要创建的数据对象
    #print(user_obj.name, user_obj.id)  # 此时还没创建对象呢,不信你打印一下id发现还是None
    
    #print(user_obj.name, user_obj.id)  # 此时也依然还没创建
    Session.add(user_obj)  # 把要创建的数据对象添加到这个session里, 一会统一创建
    Session.add(user_obj2)  # 把要创建的数据对象添加到这个session里, 一会统一创建
    Session.commit()  # 现此才统一提交,创建数据
    View Code

    效果:

    mysql> select * from  user;
    +----+-------------+----------+
    | id | name        | password |
    +----+-------------+----------+
    | 1 | 王昭君      | 123456   |
    | 2 | 韩信        | 123456   |
    +----+-------------+----------+
    2 rows in set (0.00 sec)
    View Code

     查找数据:

    #Author:Yun
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    #查找所有数据
    data1 = Session.query(table_structure.User).filter_by().all()
    #查找第一个数据
    data2 = Session.query(table_structure.User).filter_by().first()
    #查找id=1的数据
    data3= Session.query(table_structure.User).filter_by(id=1).all()
    #查找id=2的数据
    data4 = Session.query(table_structure.User).filter(table_structure.User.id ==2).all()
    #查找id>1的所有数据
    data5 = Session.query(table_structure.User).filter(table_structure.User.id>1).all()
    #多条件查询,id>0&id<2的数据
    data6 = Session.query(table_structure.User).filter(table_structure.User.id>0).filter(table_structure.User.id<2).all()
    
    print('data1:',data1)
    print('data2:',data2)
    print('data3:',data3)
    
    print('data4:',data4)
    print('data5:',data5)
    print('data6:',data6)
    View Code

    效果:

    data1: [<1 name:王昭君>, <2 name:韩信>]
    data2: <1 name:王昭君>
    data3: [<1 name:王昭君>]
    data4: [<2 name:韩信>]
    data5: [<2 name:韩信>]
    data6: [<1 name:王昭君>]
    View Code

     修改数据:

    #Author:Yun
    #修改数据
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    
    data = Session.query(table_structure.User).filter_by(name="王昭君").first()#修改数据
    
    data.name = "妲己"#将王昭君修改为妲己
    data.password = '654321'
    Session.commit()
    View Code

     效果:

    mysql> select * from  user;
    +----+-------------+----------+
    | id | name        | password |
    +----+-------------+----------+
    | 1 | 妲己        | 654321   |
    | 2 | 韩信        | 123456   |
    +----+-------------+----------+
    2 rows in set (0.00 sec)
    View Code

     回滚:

    #Author:Yun
    #回滚,类似于事物
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    
    user_obj = table_structure.User(name="老夫子", password="123456")  # 生成你要创建的数据对象
    user_obj2 = table_structure.User(name="雅典娜", password="123456")  # 生成你要创建的数据对象
    
    Session.add(user_obj)  # 把要创建的数据对象添加到这个session里, 一会统一创建
    Session.add(user_obj2)  # 把要创建的数据对象添加到这个session里, 一会统一创建
    print(Session.query(table_structure.User.name).filter(table_structure.User.name.in_(['老夫子','雅典娜'])).all())
    print('--------------after  rollback---------------:')
    Session.rollback()
    print(Session.query(table_structure.User.name).filter(table_structure.User.name.in_(['老夫子','雅典娜'])).all())
    
    Session.commit()#现在才统一提交修改数据
    View Code
     效果:
    [('老夫子',), ('雅典娜',)]
    --------------after  rollback---------------:
    []
    View Code
     
    删除数据:
     
    #Author:Yun
    #删除数据
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    
    data = Session.query(table_structure.User).filter_by(name="妲己").first()#获取数据
    Session.delete(data)#删除数据
    
    Session.commit()
    View Code
     效果:
    mysql> select * from  user;
    +----+-------------+----------+
    | id | name        | password |
    +----+-------------+----------+
    | 2 | 韩信        | 123456   |
    +----+-------------+----------+
    1 rows in set (0.00 sec)
    View Code
     
     
    统计和分组:
     
    #Author:Yun
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    
    print(Session.query(table_structure.User).filter(table_structure.User.name.in_(['韩信'])).count())#mysql 默认大小写是一样的,如 'hello'=='HELLO'
    Session.commit()#现在才统一提交修改数据
    统计
     效果:
    1
    View Code
    分组:
    #Author:Yun
    #统计
    import table_structure#导入表结构模块
    from  sqlalchemy.orm import sessionmaker
    
    Session_class = sessionmaker(bind=table_structure.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  # 生成session实例#cursor
    from  sqlalchemy  import func
    print(Session.query(table_structure.User.name,func.count(table_structure.User.name)).group_by(table_structure.User.name).all())
    Session.commit()#现在才统一提交修改数据
    View Code

     效果:

    [('韩信', 1)]
    View Code
     
    外键关联:
    我们创建两个表,student2study_record
    table_struct.py
    #Author:Yun
    #连表操作
    import sqlalchemy
    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String,DATE,ForeignKey
    from  sqlalchemy.orm import sessionmaker,relationship
    engine = create_engine("mysql+pymysql://root:yun258762@localhost/test_db",
                           encoding='utf-8')
    
    Base = declarative_base()  # 生成orm基类
    class Student(Base):
        __tablename__ = 'student2'  # 表名
        id = Column(Integer, primary_key=True)
        name = Column(String(32),nullable=False)
    
        register_date = Column(DATE,nullable=False)
    
        def __repr__(self):
            return  "<%s name:%s>" % (self.id,self.name)
    
    
    class  stu_record(Base):
    
        __tablename__ = 'study_record'
        id = Column(Integer,primary_key=True)
        day = Column(Integer,nullable=False)
        status = Column(String(32),nullable=False)
        stu_id = Column(Integer,ForeignKey('student2.id'))
        # stu_obj = query(id=1)
        # student = query(Student).filter(Student.id == stu_obj.stu_id).first()
        #只是在内存中建立关联关系
        #允许在stu_record表中用字段self.student.name查询Student表中的数据
        #stu_obj2 = Session.query(Student).filter(Student.name == 'luban1').first()
        #允许在Student表中用字段stu_obj2.my_study_record查询stu_record表中的数据
    
        student = relationship('Student',backref='my_study_record')
        def __repr__(self):
            return  "<%s day:%s status:%s>" % (self.student.name,self.day,self.status)
    
    Base.metadata.create_all(engine)  # 创建表结构
    View Code

    为表添加数据:

    #Author:Yun
    import table_struct#导入刚刚创建的表结构
    from  sqlalchemy.orm import sessionmaker
    Session_class = sessionmaker(bind=table_struct.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()  #生成session实例#cursor
    s1 = table_struct.Student(name='学员A',register_date='2015-11-29')
    s2 = table_struct.Student(name='学员B',register_date='2016-11-29')
    s3 = table_struct.Student(name='学员C',register_date='2017-11-29')
    s4 = table_struct.Student(name='学员D',register_date='2018-11-29')
    
    stu_obj1 = table_struct.stu_record(day=1,status='Yes',stu_id=5)
    stu_obj2 = table_struct.stu_record(day=2,status='Yes',stu_id=5)
    stu_obj3 = table_struct.stu_record(day=2,status='Yes',stu_id=6)
    stu_obj4 = table_struct.stu_record(day=3,status='No',stu_id=6)
    
    
    Session.add_all([s1,s2,s3,s4,stu_obj1,stu_obj2,stu_obj3,stu_obj4])
    
    Session.commit()#现在才统一提交修改数据
    View Code
     跨表查询:
    #Author:Yun
    #连表
    import table_struct#导入刚刚创建的表结构
    from  sqlalchemy.orm import sessionmaker
    Session_class = sessionmaker(bind=table_struct.engine)  # 创建与数据库的会话session class ,注意,这里返回给session的是个class,不是实例
    Session = Session_class()#生成session实例#cursor
    #跨表查询
    stu_obj = Session.query(table_struct.Student).filter(table_struct.Student.name=='学员A').first()
    print(stu_obj.my_study_record)
    Session.commit()#现在才统一提交修改数据
    View Code
     效果:
     
    [<学员A day:1 status:Yes>, <学员A day:2 status:Yes>]
    View Code
     常用查询语法:
     
    常见的过滤器操作符
    以下是filter()中使用的一些最常见运算符的概述
     
    • equals:

           query.filter(User.name == 'ed')
      
    • not equals:

           query.filter(User.name != 'ed')
      
    • LIKE:

      query.filter(User.name.like('%ed%'))

    • IN:

    • NOT IN:
      query.filter(~User.name.in_(['ed', 'wendy', 'jack']))

    • IS NULL:

    • IS NOT NULL:

    • AND:
      2.1. ObjectRelationalTutorial 17

     
    query.filter(User.name.in_(['ed', 'wendy', 'jack']))
    
    # works with query objects too:
    

    query.filter(User.name.in_( session.query(User.name).filter(User.name.like('%ed%'))

    ))

    query.filter(User.name == None)
    
    # alternatively, if pep8/linters are a concern
    
    query.filter(User.name.is_(None))
    
    query.filter(User.name != None)
    
    # alternatively, if pep8/linters are a concern
    
    query.filter(User.name.isnot(None))
    

    SQLAlchemy Documentation, Release 1.1.0b1

    # use and_()

    from sqlalchemy import and_
    query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones'))

    # or send multiple expressions to .filter()
    
    query.filter(User.name == 'ed', User.fullname == 'Ed Jones')
    
    # or chain multiple filter()/filter_by() calls
    
    query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')
    

    Note: Makesureyouuseand_()andnotthePythonandoperator! • OR:

    Note: Makesureyouuseor_()andnotthePythonoroperator! • MATCH:

    query.filter(User.name.match('wendy'))
    Note: match() uses a database-specific MATCH or CONTAINS f 

     

    4.多外键关联

     处理的最常见情况之一是两个表之间有多个外键路径。考虑一个Customer类,它包含Address类的两个外键:
     
    下表中,Customer表有2个字段都关联了Address表
    #Author:Yun
    import sqlalchemy
    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String,DATE,ForeignKey
    from  sqlalchemy.orm import relationship
    engine = create_engine("mysql+pymysql://root:yun258762@192.168.176.139/test_db",
                           encoding='utf-8')
    
    Base = declarative_base()  # 生成orm基类
    class Customer(Base):
        __tablename__ = 'customer'  # 表名
        id = Column(Integer, primary_key=True)
        name = Column(String(32),nullable=False)
    
        builling_address_id = Column(Integer,ForeignKey('address.id'))
    
        shipping_address_id = Column(Integer,ForeignKey('address.id'))
    
        builling_address = relationship("Address",foreign_keys=[builling_address_id])
        shipping_address = relationship("Address",foreign_keys=[shipping_address_id])
        def __repr__(self):
            return  "<%s name:%s>" % (self.id,self.name)
    
    
    class  Address(Base):
    
        __tablename__ = 'address'
        id = Column(Integer,primary_key=True)
        street = Column(String(64),nullable=False)
        city = Column(String(64),nullable=False)
        state = Column(String(64),nullable=False)
    
    
        def __repr__(self):
    
            return self.street
    Base.metadata.create_all(engine)  # 创建表结构
    View Code
     添加数据,并跨表查询
    #Author:Yun
    #同一张表里关联另一个表里的两个地址
    import  orm_fk
    
    from sqlalchemy.orm import  sessionmaker
    
    Session_class = sessionmaker(bind=orm_fk.engine)#创建于数据
    
    session = Session_class()#生成session实例  #cursor
    
    add1  = orm_fk.Address(street='中路',city='艾欧尼亚',state='召唤师峡谷' )
    add2  = orm_fk.Address(street='上路',city='艾欧尼亚',state='召唤师峡谷' )
    add3  = orm_fk.Address(street='下路',city='艾欧尼亚',state='召唤师峡谷' )
    
    session.add_all([add1,add2,add3])
    
    c1 = orm_fk.Customer(name='鲁班',builling_address=add1,shipping_address=add1)
    c2 = orm_fk.Customer(name='卡莎',builling_address=add1,shipping_address=add2)
    c3 = orm_fk.Customer(name='妖姬',builling_address=add2,shipping_address=add3)
    #为表添加数据
    #session.add_all([c1,c2,c3])
    obj = session.query(orm_fk.Customer).filter(orm_fk.Customer.name=='妖姬').first()
    print(obj.name,obj.builling_address,obj.shipping_address)
    session.commit()
    View Code
    效果:
    妖姬 上路 下路
    View Code

    5.多对多关系

    现在来设计一个能描述“图书”与“作者”的关系的表结构,需求是

    1. 一本书可以有好几个作者一起出版
    2. 一个作者可以写好几本书
    思维构图:

    一本书----》多个作者;一个作者-----》多本书

     
     

    这样就相当于通过book_m2m_author表完成了book表和author表之前的多对多关联

    用orm如何表示呢?
    #Author:Yun
    from sqlalchemy import Table, Column, Integer,String,DATE, ForeignKey
    from sqlalchemy.orm import relationship
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import create_engine
    from sqlalchemy.orm import sessionmaker
    
    engine = create_engine("mysql+pymysql://root:yun258762@localhost/test_db?charset=utf8",
                           )
    
    Base = declarative_base()
    #通orm自动维护这表,所以不需要用类方法创建,映射
    book_m2m_author = Table('book_m2m_author', Base.metadata,
                            Column('book_id',Integer,ForeignKey('books.id')),
                            Column('author_id',Integer,ForeignKey('authors.id')),
                            )
    
    class Book(Base):
        __tablename__ = 'books'
        id = Column(Integer,primary_key=True)
        name = Column(String(64))
        pub_date = Column(DATE)
        authors = relationship('Author',secondary=book_m2m_author,backref='books')
    
        def __repr__(self):
            return "<book_name:%s date:%s>" % (self.name,self.pub_date)
    
    class Author(Base):
        __tablename__ = 'authors'
        id = Column(Integer, primary_key=True)
        name = Column(String(32))
    
        def __repr__(self):
            return "<author:%s>" %self.name
    
    Base.metadata.create_all(engine)  # 创建表结构
     
     接下来创建几本书和作者:
    import orm_fk
    
    from sqlalchemy.orm  import  sessionmaker
    
    Session_class = sessionmaker(bind=orm_fk.engine)#创建于数据
    
    
    session = Session_class()
    
    b1 = orm_fk.Book(name='消费者行为学',pub_date='2018-11-29')
    b2 = orm_fk.Book(name='活着',pub_date='2018-11-29')
    b3 = orm_fk.Book(name='盲井',pub_date='2018-11-29')
    
    a1 = orm_fk.Author(name='鲁班')
    a2 = orm_fk.Author(name='妖姬')
    a3 = orm_fk.Author(name='妲己')
    a4 = orm_fk.Author(name='提莫')
    
    
    b1.authors = [a1,a3]
    b2.authors = [a2,a4]
    b3.authors = [a1,a2,a3]
    
    session.add_all([b1,b2,b3,a1,a2,a3])
    
    session.commit()
     
     效果:
    mysql> select * from  authors;
    +----+--------+
    | id | name   |
    +----+--------+
    |  1 | 鲁班   |
    |  2 | 妖姬   |
    |  3 | 提莫   |
    |  4 | 妲己   |
    +----+--------+
    4 rows in set (0.00 sec)
    
    mysql> select * from  books;
    +----+--------------------+------------+
    | id | name               | pub_date   |
    +----+--------------------+------------+
    |  1 | 消费者行为学       | 2018-11-29 |
    |  2 | 盲井               | 2018-11-29 |
    |  3 | 活着               | 2018-11-29 |
    +----+--------------------+------------+
    3 rows in set (0.00 sec)
    
    mysql> select * from  book_m2m_author;
    +---------+-----------+
    | book_id | author_id |
    +---------+-----------+
    |       1 |         1 |
    |       1 |         4 |
    |       2 |         1 |
    |       2 |         2 |
    |       2 |         4 |
    |       3 |         2 |
    |       3 |         3 |
    +---------+-----------+
    7 rows in set (0.00 sec)
     
     此时,我们去用orm查一下数据
     
    import orm_fk
    
    from sqlalchemy.orm  import  sessionmaker
    
    Session_class = sessionmaker(bind=orm_fk.engine)#创建于数据
    
    
    session = Session_class()
    
    
    print('----通过作者表查关联的书-------')
    author_obj = session.query(orm_fk.Author).filter(orm_fk.Author.name=='鲁班').first()
    print(author_obj.books)
    print('----通过书表查看关联的作者-------')
    
    book_obj = session.query(orm_fk.Book).filter(orm_fk.Book.id==1).first()
    
    print(book_obj.authors)
    
    session.commit()

     效果:

    ----通过作者表查关联的书-------
    [<book_name:消费者行为学 date:2018-11-29>, <book_name:盲井 date:2018-11-29>]
    ----通过书表查看关联的作者-------
    [<author:鲁班>, <author:妲己>]

    多对多删除

    删除数据时不用管boo_m2m_authors , sqlalchemy会自动帮你把对应的数据删除

    通过书删除作者

    #Author:Yun
    import orm_fk
    
    from sqlalchemy.orm  import  sessionmaker
    
    Session_class = sessionmaker(bind=orm_fk.engine)#创建于数据
    
    
    session = Session_class()
    
    
    author_obj = session.query(orm_fk.Author).filter_by(name="鲁班").first()
    
    book_obj = session.query(orm_fk.Book).filter_by(name="盲井").first()
    
    book_obj.authors.remove(author_obj)  # 从一本书里删除一个作者
    session.commit()
     
     效果:
    删除之前:
    mysql> select * from  book_m2m_author;
    +---------+-----------+
    | book_id | author_id |
    +---------+-----------+
    |       1 |         1 |
    |       1 |         4 |
    |       2 |         1 |
    |       2 |         2 |
    |       2 |         4 |
    |       3 |         2 |
    |       3 |         3 |
    +---------+-----------+
    7 rows in set (0.00 sec)
    删除之后:
    mysql> select * from  book_m2m_author;
    +---------+-----------+
    | book_id | author_id |
    +---------+-----------+
    |       1 |         1 |
    |       1 |         4 |
    |       2 |         2 |
    |       2 |         4 |
    |       3 |         2 |
    |       3 |         3 |
    +---------+-----------+
    6 rows in set (0.00 sec)
     

    直接删除作者 

    删除作者时,会把这个作者跟所有书的关联关系数据也自动删除

    #Author:Yun
    import orm_fk
    
    from sqlalchemy.orm  import  sessionmaker
    
    Session_class = sessionmaker(bind=orm_fk.engine)#创建于数据
    
    session = Session_class()
    
    author_obj =session.query(orm_fk.Author).filter_by(name="鲁班").first()
    print(author_obj.name , author_obj.books)
    session.delete(author_obj)
    
    session.commit()

    效果:

    mysql> select * from  book_m2m_author;
    +---------+-----------+
    | book_id | author_id |
    +---------+-----------+
    |       1 |         1 |
    |       1 |         4 |
    |       2 |         2 |
    |       2 |         4 |
    |       3 |         2 |
    |       3 |         3 |
    +---------+-----------+
    6 rows in set (0.00 sec)
    
    mysql> select * from  book_m2m_author;
    +---------+-----------+
    | book_id | author_id |
    +---------+-----------+
    |       1 |         4 |
    |       2 |         2 |
    |       2 |         4 |
    |       3 |         2 |
    |       3 |         3 |
    +---------+-----------+
    5 rows in set (0.00 sec)
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    Great works are not done by strength, but by persistence!
  • 相关阅读:
    hdu 2063 二分图—最大匹配
    sql 中文转拼音首字母
    PhpStorm中如何使用Xdebug工具,入门级操作方法
    Linux怎么查看软件安装路径 查看mysql安装在哪
    仿淘宝实现多行星级评价
    Syslog linux 日志 规格严格
    Windows 退出码 规格严格
    AIX 查看进程监听端口 规格严格
    AIX tar zxvf 规格严格
    IpV6 linux RedHat5 规格严格
  • 原文地址:https://www.cnblogs.com/yunwangjun-python-520/p/10045834.html
Copyright © 2020-2023  润新知