• Mixed Far-Field and Near-Field Source Localization Based on Subarray Cross-Cumulant


    基于子阵列互累积量(Cross-Cumulant)的远场和近场混合声源定位[1]。

    文中采用Uniform linear array (ULA)阵列,将其分为两个互相重叠的子阵列,构建关于子阵列输出信号的两个特殊cross-cumulant matrices,而这两个矩阵仅仅与源信号的DOA有关。

    信号模型

    阵列模型如下:

    K个窄带信号,阵元数目为2M+1的对称ULA阵列。假设中间阵元为相位基准。则第m个传感器的接收信号可以表示为:

    其中为第k个入射信号的波形,为第m个传感器的噪声,为第k个源信号从阵元0到阵元m个传播时间(时延)。

    当第k个入射信号是near-field信号时,满足如下形式:

     

     λ表示波长,分别表示第k个源信号的DOA和range。根据菲涅耳区域的定义,,并且表示阵列孔径。

     当第k个入射信号是far-field信号时,满足形式:

     将公式(1)写为矩阵形式,可以表示为:

     

    其中是维度为的复数向量,并且有:

    其中(2M + 1) × 1 的导向矢量表示为:

     需要注意的是,在公式(6)表示的接收信号模型,前个源信号假定为FF源(近场源信号),剩余个假定为NF源(远场源信号)。

    本文有如下先验假设:

    (1)源信号是统计独立的,采用非零峭度进行零均值随机处理。

    (2)传感器噪声是加性的空间高斯白噪声,具有零均值。并且和源信号互相独立。

    (3)已知源信号数目K,或者已经采用信息论准则准确估计得到。

     提出算法

     1、FF源和NF源的DOA估计

    基于上述假设,阵列输出信号的四阶累计量表示为:

    。其中第k个源信号的峭度表示为:

     使得,公式(14)可以写作:

    如图1所示,我们将ULA阵列划分为两个相互重叠的子阵列Y和Z,用以构建子阵列输出信号的cross-cumulant matrices,从此推导累积量的平移不变性。子阵列Y和Z的接收信号向量可以表示为:

                              

    很明显地,y(t)的第m个元素为,z(t)的第m个元素为

    根据上述子阵列的输出信号和公式(15),可以构建两个互累积量矩阵,其第个元素为:

                                      

    其中。注意上述两个互累积量矩阵可以仅用DOAs表示。

    C1表示为紧凑的矩阵形式:

    其中,虚拟的“阵列流型矢量”为,并且

    同理,C2可以表示为:

    其中

    结合C1和C2,得到(4M - 2) × (4M - 2) 矩阵为:

                                                     

    对C进行特征值分解,得到:

     

    其中,并且是包含K个C的最大特征值以及(4M-2-K)个C的最小特征是的对角矩阵。分别是对应的特征向量组成的矩阵。

    基于子阵列理论,张成的列空间,这表示存在一个K×K的矩阵T使得:

    使得E1和E2为Es的最大和最小(2M-1)×K的半矩阵,由上式得到:,组成结果:

    其中。公式(28)可以用TLS准则求解,其特征值是和源信号的DOAs相关的。使得V为的2K×2K的右奇异向量,当V被划分为4个K×K子阵列:

     

    则公式(28)的解可以给出:

     

    假设的第k个特征值,则第k个源信号的DOA可以给出:

    2、源辨识和距离估测

    对接收信号的相关矩阵进行EVD,得到:

    其中分别为包含R的K个最大特征值和(2M+1-K)个最小特征值的对角矩阵。分别为对应的特征向量组成的矩阵。

    根据上述DOA估计值,代入到下述谱函数中:

    可以计算估计距离

    此处无需其他处理,自动匹配。实际上,我们就可以辨别不同的源信号了,当时,第k个源为NF源;当时为FF源,此时使得

    3、讨论

     1)需要注意的是,为了避免中的元素出现相位模糊性,文中提出算法要求

     2)鉴于四阶累计量矩阵C1和C2的维度是2M-1,对于一个包含2M+1个真元的ULA,最多可以定位2M-2个不同源信号。不同的是,二阶MUSIC算法和高阶MUSIC算法可以分别最多处理M和2M个源信号。

     3)对于文中提出方法,主要的计算量在于构建累积量矩阵,计算协方差矩阵,及其EVDs和距离搜索,需要乘法次数次,其中为在菲涅尔域内搜索点数。

    因为除了搜索距离,还需要估计DOAs,高阶MUSIC算法需要的乘法次数为

    二阶MUSIC算法需要的乘法次数为。其中是在角度域中需要搜索的点数。

    需要注意的是,文中所提方法的计算复杂度中没有,所以其计算复杂度低于高阶MUSIC。

    仿真实验

     

    参考文献

    [1] Zhi Zheng, Mingcheng Fu, Wen-Qin Wang,etc. Mixed Far-Field and Near-Field Source Localization Based on Subarray Cross-Cumulant ☆[J]. Signal Processing, 2018.

  • 相关阅读:
    【bzoj2821】作诗(Poetize)
    ZOJ-2112-Dynamic Rankings(线段树套splay树)
    POJ- 2104 hdu 2665 (区间第k小 可持久化线段树)
    hust-1024-dance party(最大流--枚举,可行流判断)
    hdu-3046-Pleasant sheep and big big wolf(最大流最小割)
    POJ-3294-Life Forms(后缀数组-不小于 k 个字符串中的最长子串)
    POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)
    POJ-2774-Long Long Message(后缀数组-最长公共子串)
    POJ-3693-Maximum repetition substring(后缀数组-重复次数最多的连续重复子串)
    spoj-694-Distinct Substrings(后缀数组)
  • 原文地址:https://www.cnblogs.com/ytxwzqin/p/9261328.html
Copyright © 2020-2023  润新知