• hdu-3046-Pleasant sheep and big big wolf(最大流最小割)


    题意:

    给出最少栏杆数使狼和羊分离

    分析:

    将狼与源点连,羊与汇点连,容量都为无穷,将图的各个相邻点连接,容量为1

    然后题目就转化成最小去掉多少条边使不连通,即求最小割最大流.

    // File Name: 3046.cpp
    // Author: Zlbing
    // Created Time: 2013/9/10 20:41:04
    
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdlib>
    #include<cstdio>
    #include<set>
    #include<map>
    #include<vector>
    #include<cstring>
    #include<stack>
    #include<cmath>
    #include<queue>
    using namespace std;
    #define CL(x,v); memset(x,v,sizeof(x));
    #define INF 0x3f3f3f3f
    #define LL long long
    #define REP(i,r,n) for(int i=r;i<=n;i++)
    #define RREP(i,n,r) for(int i=n;i>=r;i--)
    const int MAXN=200*200+100;
    struct Edge{
        int from,to,cap,flow;
    };
    bool cmp(const Edge& a,const Edge& b){
        return a.from < b.from || (a.from == b.from && a.to < b.to);
    }
    struct Dinic{
        int n,m,s,t;
        vector<Edge> edges;
        vector<int> G[MAXN];
        bool vis[MAXN];
        int d[MAXN];
        int cur[MAXN];
        void init(int n){
            this->n=n;
            for(int i=0;i<=n;i++)G[i].clear();
            edges.clear();
        }
        void AddEdge(int from,int to,int cap){
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,cap,0});//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0
            m=edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool BFS(){
            CL(vis,0);
            queue<int> Q;
            Q.push(s);
            d[s]=0;
            vis[s]=1;
            while(!Q.empty()){
                int x=Q.front();
                Q.pop();
                for(int i=0;i<G[x].size();i++){
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to]&&e.cap>e.flow){
                        vis[e.to]=1;
                        d[e.to]=d[x]+1;
                        Q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
        int DFS(int x,int a){
            if(x==t||a==0)return a;
            int flow=0,f;
            for(int& i=cur[x];i<G[x].size();i++){
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                    e.flow+=f;
                    edges[G[x][i]^1].flow-=f;
                    flow+=f;
                    a-=f;
                    if(a==0)break;
                }
            }
            return flow;
        }
        //当所求流量大于need时就退出,降低时间
        int Maxflow(int s,int t,int need){
            this->s=s;this->t=t;
            int flow=0;
            while(BFS()){
                CL(cur,0);
                flow+=DFS(s,INF);
                if(flow>need)return flow;
            }
            return flow;
        }
        //最小割割边
        vector<int> Mincut(){
            BFS();
            vector<int> ans;
            for(int i=0;i<edges.size();i++){
                Edge& e=edges[i];
                if(vis[e.from]&&!vis[e.to]&&e.cap>0)ans.push_back(i);
            }
            return ans;
        }
        void Reduce(){
            for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
        }
        void ClearFlow(){
            for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
        }
    };
    Dinic solver;
    int main()
    {
        int n,m;
        int cas=0;
        while(~scanf("%d%d",&n,&m))
        {
            int s=n*m;
            int t=n*m+1;
            int N=n*m+1;
            solver.init(N);
            int a;
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<m;j++)
                {
                    scanf("%d",&a);
                    if(i!=0)
                        solver.AddEdge((i-1)*m+j,i*m+j,1);
                    if(j!=0)
                        solver.AddEdge(i*m+j-1,i*m+j,1);
                    if(a==1)
                        solver.AddEdge(s,i*m+j,INF);
                    if(a==2)
                        solver.AddEdge(i*m+j,t,INF);
                }
            }
            int ans=solver.Maxflow(s,t,INF);
            printf("Case %d:
    ",++cas);
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    java面试题之简单介绍一下集合框架
    java面试题之hashcode相等两个类一定相等吗?equals呢?相反呢?
    java面试题之什么是ThreadLocal?底层如何实现的?
    java面试题之stop()和suspend()方法为何不不推荐使⽤?
    设计模式—单例模式
    Java并发—同步容器和并发容器
    Java并发—并发工具类
    Java并发—原子类,java.util.concurrent.atomic包(转载)
    Java并发—java.util.concurrent.locks包
    Java并发—java.util.concurrent并发包概括(转载)
  • 原文地址:https://www.cnblogs.com/arbitrary/p/3313382.html
Copyright © 2020-2023  润新知