• Keras实现VGG16


    一.代码实现

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Sat Feb  9 15:33:39 2019
     4 
     5 @author: zhen
     6 """
     7 
     8 from keras.applications.vgg16 import VGG16
     9 
    10 from keras.layers import Flatten
    11 from keras.layers import Dense
    12 from keras.layers import Dropout
    13 from keras.models import Model
    14 from keras.optimizers import SGD
    15 
    16 from keras.datasets import mnist
    17 
    18 import cv2
    19 import numpy as np
    20 # 因初始设置需大量内存(至少24G),现设置为最小分辨率以降低内存的要求
    21 model_vgg = VGG16(include_top=False, weights='imagenet', input_shape=(48, 48, 3))
    22 
    23 for layer in model_vgg.layers:
    24     layer.trainable = False
    25 model = Flatten(name='flatten')(model_vgg.output) # 扁平化
    26 model = Dense(4096, activation='relu', name='fc1')(model)
    27 model = Dense(4096, activation='relu', name='fc2')(model)
    28 model = Dropout(0.5)(model)
    29 model = Dense(10, activation='softmax')(model)
    30 model_vgg_mnist = Model(inputs=model_vgg.input, outputs=model, name='vgg16')
    31 
    32 model_vgg_mnist.summary()
    33 
    34 # VGGNet初始推荐
    35 model_vgg = VGG16(include_top=False, weights='imagenet', input_shape=(224, 224, 3))
    36 for layer in model_vgg.layers:
    37     layer.trainable = False
    38     
    39 model = Flatten()(model_vgg.output)
    40 model = Dense(4096, activation='relu', name='fc1')(model)
    41 model = Dense(4096, activation='relu', name='fc2')(model)
    42 model = Dropout(0.5)(model)
    43 model = Dense(10, activation='softmax', name='prediction')(model)
    44 model_vgg_mnist_pretrain = Model(model_vgg.input, model, name='vgg16_pretrain')
    45 
    46 model_vgg_mnist_pretrain.summary()
    47 
    48 sgd = SGD(lr=0.05, decay=1e-5) # 随机梯度下降
    49 model_vgg_mnist.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
    50 
    51 (x_train, y_train), (x_test, y_test) = mnist.load_data("../test_data_home")
    52 x_train, y_train = x_train[:1000], y_train[:1000]
    53 x_test, y_test = x_test[:1000], y_test[:1000]
    54 # GRAY两通道转换为RGB三通道
    55 x_train = [cv2.cvtColor(cv2.resize(i, (48, 48)), cv2.COLOR_GRAY2RGB) for i in x_train]
    56 x_train = np.concatenate([arr[np.newaxis] for arr in x_train]).astype('float32')
    57 
    58 x_test = [cv2.cvtColor(cv2.resize(i, (48, 48)), cv2.COLOR_GRAY2RGB) for i in x_test]
    59 x_test = np.concatenate([arr[np.newaxis] for arr in x_test]).astype('float32')
    60 
    61 print(x_train.shape)
    62 print(x_test.shape)
    63 
    64 x_train = x_train / 255
    65 x_test = x_test / 255
    66 
    67 def tran_y(y):
    68     y_ohe = np.zeros(10)
    69     y_ohe[y] = 1
    70     return y_ohe
    71 
    72 y_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))])
    73 y_test_ohe = np.array([tran_y(y_test[i]) for i in range(len(y_test))])
    74 
    75 model_vgg_mnist.fit(x_train, y_train_ohe, validation_data=(x_test, y_test_ohe), epochs=20, batch_size=100)

    二.结果

    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    input_9 (InputLayer)         (None, 48, 48, 3)         0         
    _________________________________________________________________
    block1_conv1 (Conv2D)        (None, 48, 48, 64)        1792      
    _________________________________________________________________
    block1_conv2 (Conv2D)        (None, 48, 48, 64)        36928     
    _________________________________________________________________
    block1_pool (MaxPooling2D)   (None, 24, 24, 64)        0         
    _________________________________________________________________
    block2_conv1 (Conv2D)        (None, 24, 24, 128)       73856     
    _________________________________________________________________
    block2_conv2 (Conv2D)        (None, 24, 24, 128)       147584    
    _________________________________________________________________
    block2_pool (MaxPooling2D)   (None, 12, 12, 128)       0         
    _________________________________________________________________
    block3_conv1 (Conv2D)        (None, 12, 12, 256)       295168    
    _________________________________________________________________
    block3_conv2 (Conv2D)        (None, 12, 12, 256)       590080    
    _________________________________________________________________
    block3_conv3 (Conv2D)        (None, 12, 12, 256)       590080    
    _________________________________________________________________
    block3_pool (MaxPooling2D)   (None, 6, 6, 256)         0         
    _________________________________________________________________
    block4_conv1 (Conv2D)        (None, 6, 6, 512)         1180160   
    _________________________________________________________________
    block4_conv2 (Conv2D)        (None, 6, 6, 512)         2359808   
    _________________________________________________________________
    block4_conv3 (Conv2D)        (None, 6, 6, 512)         2359808   
    _________________________________________________________________
    block4_pool (MaxPooling2D)   (None, 3, 3, 512)         0         
    _________________________________________________________________
    block5_conv1 (Conv2D)        (None, 3, 3, 512)         2359808   
    _________________________________________________________________
    block5_conv2 (Conv2D)        (None, 3, 3, 512)         2359808   
    _________________________________________________________________
    block5_conv3 (Conv2D)        (None, 3, 3, 512)         2359808   
    _________________________________________________________________
    block5_pool (MaxPooling2D)   (None, 1, 1, 512)         0         
    _________________________________________________________________
    flatten (Flatten)            (None, 512)               0         
    _________________________________________________________________
    fc1 (Dense)                  (None, 4096)              2101248   
    _________________________________________________________________
    fc2 (Dense)                  (None, 4096)              16781312  
    _________________________________________________________________
    dropout_9 (Dropout)          (None, 4096)              0         
    _________________________________________________________________
    dense_5 (Dense)              (None, 10)                40970     
    =================================================================
    Total params: 33,638,218
    Trainable params: 18,923,530
    Non-trainable params: 14,714,688
    _________________________________________________________________
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    input_10 (InputLayer)        (None, 224, 224, 3)       0         
    _________________________________________________________________
    block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
    _________________________________________________________________
    block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
    _________________________________________________________________
    block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
    _________________________________________________________________
    block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
    _________________________________________________________________
    block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
    _________________________________________________________________
    block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
    _________________________________________________________________
    block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
    _________________________________________________________________
    block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
    _________________________________________________________________
    block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
    _________________________________________________________________
    block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
    _________________________________________________________________
    block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
    _________________________________________________________________
    block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
    _________________________________________________________________
    block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
    _________________________________________________________________
    block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
    _________________________________________________________________
    block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
    _________________________________________________________________
    block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
    _________________________________________________________________
    block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
    _________________________________________________________________
    block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
    _________________________________________________________________
    flatten_5 (Flatten)          (None, 25088)             0         
    _________________________________________________________________
    fc1 (Dense)                  (None, 4096)              102764544 
    _________________________________________________________________
    fc2 (Dense)                  (None, 4096)              16781312  
    _________________________________________________________________
    dropout_10 (Dropout)         (None, 4096)              0         
    _________________________________________________________________
    prediction (Dense)           (None, 10)                40970     
    =================================================================
    Total params: 134,301,514
    Trainable params: 119,586,826
    Non-trainable params: 14,714,688
    _________________________________________________________________
    (1000, 48, 48, 3)
    (1000, 48, 48, 3)
    Train on 1000 samples, validate on 1000 samples
    Epoch 1/20
    1000/1000 [==============================] - 175s 175ms/step - loss: 2.1289 - acc: 0.2350 - val_loss: 1.9100 - val_acc: 0.4230
    Epoch 2/20
    1000/1000 [==============================] - 190s 190ms/step - loss: 1.7685 - acc: 0.4420 - val_loss: 1.6503 - val_acc: 0.4930
    Epoch 3/20
    1000/1000 [==============================] - 265s 265ms/step - loss: 1.5582 - acc: 0.5140 - val_loss: 1.5005 - val_acc: 0.5440
    Epoch 4/20
    1000/1000 [==============================] - 373s 373ms/step - loss: 1.4210 - acc: 0.5710 - val_loss: 1.3019 - val_acc: 0.6160
    Epoch 5/20
    1000/1000 [==============================] - 295s 295ms/step - loss: 1.1946 - acc: 0.6490 - val_loss: 1.1182 - val_acc: 0.7280
    Epoch 6/20
    1000/1000 [==============================] - 277s 277ms/step - loss: 1.0291 - acc: 0.7330 - val_loss: 1.0279 - val_acc: 0.7430
    Epoch 7/20
    1000/1000 [==============================] - 177s 177ms/step - loss: 1.0065 - acc: 0.7060 - val_loss: 0.9229 - val_acc: 0.7690
    Epoch 8/20
    1000/1000 [==============================] - 169s 169ms/step - loss: 0.8438 - acc: 0.7810 - val_loss: 0.9716 - val_acc: 0.6670
    Epoch 9/20
    1000/1000 [==============================] - 169s 169ms/step - loss: 0.8898 - acc: 0.7230 - val_loss: 0.9710 - val_acc: 0.6660
    Epoch 10/20
    1000/1000 [==============================] - 166s 166ms/step - loss: 0.8258 - acc: 0.7460 - val_loss: 0.9026 - val_acc: 0.7130
    Epoch 11/20
    1000/1000 [==============================] - 169s 169ms/step - loss: 0.7592 - acc: 0.7640 - val_loss: 0.9691 - val_acc: 0.6730
    Epoch 12/20
    1000/1000 [==============================] - 165s 165ms/step - loss: 0.7793 - acc: 0.7520 - val_loss: 0.8350 - val_acc: 0.6800
    Epoch 13/20
    1000/1000 [==============================] - 164s 164ms/step - loss: 0.6677 - acc: 0.7780 - val_loss: 0.7203 - val_acc: 0.7730
    Epoch 14/20
    1000/1000 [==============================] - 164s 164ms/step - loss: 0.7018 - acc: 0.7630 - val_loss: 0.6947 - val_acc: 0.7760
    Epoch 15/20
    1000/1000 [==============================] - 163s 163ms/step - loss: 0.6129 - acc: 0.8100 - val_loss: 0.7025 - val_acc: 0.7610
    Epoch 16/20
    1000/1000 [==============================] - 163s 163ms/step - loss: 0.6104 - acc: 0.8190 - val_loss: 0.6385 - val_acc: 0.8220
    Epoch 17/20
    1000/1000 [==============================] - 163s 163ms/step - loss: 0.5507 - acc: 0.8320 - val_loss: 0.6273 - val_acc: 0.8290
    Epoch 18/20
    1000/1000 [==============================] - 164s 164ms/step - loss: 0.5205 - acc: 0.8360 - val_loss: 0.8740 - val_acc: 0.6750
    Epoch 19/20
    1000/1000 [==============================] - 163s 163ms/step - loss: 0.5852 - acc: 0.8150 - val_loss: 0.6614 - val_acc: 0.7890
    Epoch 20/20
    1000/1000 [==============================] - 166s 166ms/step - loss: 0.5310 - acc: 0.8340 - val_loss: 0.5718 - val_acc: 0.8250

     三.解析

      VGGNet是牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发的深度卷积神经网络。VGG探索了卷积神经网络的深度与其性能之间的关系,通过反复堆叠3*3的小型卷积核和2*2的最大池化层,VGG成功构筑了16-19层深的卷积神经网络。
      VGG取得了2014年比赛分类项目第二名和定位项目第一名。同时,VGG拓展性很强,迁移到其他图片数据上的泛化性非常好。VGG的结构简洁,整个网络都是使用了同样大小的卷积核尺寸3*3和池化层2*2。VGG现在也还经常被用来提取图像特征,可用来在图像分类任务上进行再训练,相当于提供了非常好的初始化权重。
      VGG通过加深层次来提升性能,拥有5段卷积,每一段内有2-3个卷积层,同时每段尾部都会连接一个最大池化层来缩小图片尺寸。每段内的卷积核数量一样,越靠后段的卷积核数量越多,64-128-256-512-512。

  • 相关阅读:
    Yuan先生的博客网址
    Django的认证系统 auth模块
    Django 中间件使用
    Django Form表单验证
    Django ORM介绍 和字段及字段参数
    ajax 使用
    Java报表之JFreeChart
    POI
    MyBatis
    问题解决方法
  • 原文地址:https://www.cnblogs.com/yszd/p/10357989.html
Copyright © 2020-2023  润新知