FFT 做 高精度乘法
1 #include <bits/stdc++.h> 2 3 const double pi = acos(-1); 4 5 struct complex 6 { 7 double a, b; 8 9 inline complex( 10 double _a = 0, 11 double _b = 0) 12 { 13 a = _a; 14 b = _b; 15 } 16 17 inline friend complex operator + 18 (const complex &a, const complex &b) 19 { 20 return complex(a.a + b.a, a.b + b.b); 21 } 22 23 inline friend complex operator - 24 (const complex &a, const complex &b) 25 { 26 return complex(a.a - b.a, a.b - b.b); 27 } 28 29 inline friend complex operator * 30 (const complex &a, const complex &b) 31 { 32 return complex(a.a*b.a - a.b*b.b, a.a*b.b + a.b*b.a); 33 } 34 35 inline friend complex & operator += 36 (complex &a, const complex &b) 37 { 38 return a = a+b; 39 } 40 41 inline friend complex & operator -= 42 (complex &a, const complex &b) 43 { 44 return a = a-b; 45 } 46 47 inline friend complex & operator *= 48 (complex &a, const complex &b) 49 { 50 return a = a*b; 51 } 52 }; 53 54 inline complex alpha(double a) 55 { 56 return complex(cos(a), sin(a)); 57 } 58 59 typedef std::vector<complex> vec; 60 61 vec FFT(const vec &a) 62 { 63 int n = a.size(); 64 65 if (n == 1)return a; 66 67 complex w_k(1, 0); 68 complex w_n = alpha(pi*2/n); 69 70 vec ar[2], yr[2], y(n); 71 72 for (int i = 0; i < n; ++i) 73 ar[i & 1].push_back(a[i]); 74 75 for (int i = 0; i < 2; ++i) 76 yr[i] = FFT(ar[i]); 77 78 for (int i = 0; i < n/2; ++i, w_k *= w_n) 79 { 80 y[i] = yr[0][i] + w_k * yr[1][i]; 81 y[i + n/2] = yr[0][i] - w_k * yr[1][i]; 82 } 83 84 return y; 85 } 86 87 vec IFFT(const vec &a) 88 { 89 int n = a.size(); 90 91 if (n == 1)return a; 92 93 complex w_k(1, 0); 94 complex w_n = alpha(-pi*2/n); 95 96 vec ar[2], yr[2], y(n); 97 98 for (int i = 0; i < n; ++i) 99 ar[i & 1].push_back(a[i]); 100 101 for (int i = 0; i < 2; ++i) 102 yr[i] = IFFT(ar[i]); 103 104 for (int i = 0; i < n/2; ++i, w_k *= w_n) 105 { 106 y[i] = yr[0][i] + w_k * yr[1][i]; 107 y[i + n/2] = yr[0][i] - w_k * yr[1][i]; 108 } 109 110 return y; 111 } 112 113 char s1[100005]; int len1; 114 char s2[100005]; int len2; 115 116 vec v1, v2, p1, p2, mul, ans; 117 118 signed main(void) 119 { 120 scanf("%s", s1); len1 = strlen(s1); 121 scanf("%s", s2); len2 = strlen(s2); 122 123 int len = len1 + len2; 124 125 while (len != (len&-len))++len; 126 127 for (int i = len1 - 1; ~i; --i)v1.push_back(complex(s1[i] - '0', 0)); 128 for (int i = len2 - 1; ~i; --i)v2.push_back(complex(s2[i] - '0', 0)); 129 130 while ((int)v1.size() < len)v1.push_back(complex()); 131 while ((int)v2.size() < len)v2.push_back(complex()); 132 133 p1 = FFT(v1); 134 p2 = FFT(v2); 135 136 for (int i = 0; i < len; ++i) 137 mul.push_back(p1[i] * p2[i]); 138 139 ans = IFFT(mul); 140 141 std::vector<int> ret; 142 143 for (int i = 0; i < len; ++i) 144 ret.push_back((int)round(ans[i].a / len)); 145 146 for (int i = 0; i < len; ++i) 147 if (ret[i] >= 10) 148 { 149 ret[i + 1] += ret[i] / 10; 150 ret[i] %= 10; 151 } 152 153 while (ret.size() != 1 && !ret[ret.size() - 1]) 154 ret.pop_back(); 155 156 for (int i = ret.size() - 1; i >= 0; --i) 157 putchar('0' + ret[i]); 158 putchar(' '); 159 }
@Author: YouSiki