• hdu 5046 Airport 二分+重复覆盖


    题目链接

    给n个点, 定义两点之间距离为|x1-x2|+|y1-y2|。 然后要选出k个城市建机场, 每个机场可以覆盖一个半径的距离。 求在选出点数不大于k的情况下, 这个半径距离的最大值。

    二分半径, 然后距离小于等于半径的就连边, 然后跑重复覆盖。

    #include<bits/stdc++.h>
    using namespace std;
    #define pb(x) push_back(x)
    #define ll long long
    #define mk(x, y) make_pair(x, y)
    #define lson l, m, rt<<1
    #define mem(a) memset(a, 0, sizeof(a))
    #define rson m+1, r, rt<<1|1
    #define mem1(a) memset(a, -1, sizeof(a))
    #define mem2(a) memset(a, 0x3f, sizeof(a))
    #define rep(i, a, n) for(int i = a; i<n; i++)
    #define ull unsigned long long
    typedef pair<int, int> pll;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int mod = 1e9+7;
    const int inf = 1061109567;
    const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
    const int maxn = 70;
    const int maxNode = 5000;
    int num;
    struct DLX {
        int L[maxNode], R[maxNode], U[maxNode], D[maxNode], row[maxNode], col[maxNode];
        int S[maxn], H[maxn], sz, n, m, k, x[maxn], y[maxn];
        ll dis[maxn][maxn];
        void remove(int c) {
            for(int i = D[c]; i!=c; i = D[i]) {
                L[R[i]] = L[i];
                R[L[i]] = R[i];
            }
        }
        void resume(int c) {
            for(int i = U[c]; i!=c; i = U[i]) {
                L[R[i]] = i;
                R[L[i]] = i;
            }
        }
        int h() {
            int cnt = 0;
            int vis[70];
            mem(vis);
            for(int i = R[0]; i!=0; i = R[i]) {
                if(!vis[i]) {
                    cnt++;
                    vis[i] = 1;
                    for(int j = D[i]; j!=i; j = D[j]) {
                        for(int k = R[j]; k!=j; k = R[k]) {
                            vis[col[k]] = 1;
                        }
                    }
                }
            }
            return cnt;
        }
        int dfs(int d) {
            if(d+h()>k)
                return 0;
            if(R[0] == 0) {
                return 1;
            }
            int c = R[0];
            for(int i = R[0]; i!=0; i = R[i])
                if(S[c]>S[i])
                    c = i;
            for(int i = D[c]; i!=c; i = D[i]) {
                remove(i);
                for(int j = R[i]; j!=i; j = R[j])
                    remove(j);
                if(dfs(d+1))
                    return 1;
                for(int j = L[i]; j!=i; j = L[j])
                    resume(j);
                resume(i);
            }
            return 0;
        }
        void add(int r, int c) {
            sz++;
            row[sz] = r;
            col[sz] = c;
            S[c]++;
            U[sz] = U[c];
            D[sz] = c;
            D[U[c]] = sz;
            U[c] = sz;
            if(~H[r]) {
                R[sz] = H[r];
                L[sz] = L[H[r]];
                L[R[sz]] = sz;
                R[L[sz]] = sz;
            } else {
                H[r] = L[sz] = R[sz] = sz;
            }
        }
        void init() {
            mem1(H);
            for(int i = 0; i<=n; i++) {
                R[i] = i+1;
                L[i] = i-1;
                U[i] = i;
                D[i] = i;
            }
            mem(S);
            R[n] = 0;
            L[0] = n;
            sz = n;
        }
        int check(ll x) {
            init();
            for(int i = 1; i <= n; i++) {
                for(int j = 1; j <= n; j++) {
                    if(dis[i][j] <= x) {
                        add(i, j);
                    }
                }
            }
            if(dfs(0))
                return 1;
            return 0;
        }
        void solve() {
            scanf("%d%d", &n, &k);
            for(int i = 1; i <= n; i++) {
                scanf("%d%d", &x[i], &y[i]);
            }
            for(int i = 1; i <= n; i++) {
                for(int j = 1; j <= n; j++) {
                    dis[i][j] = 1LL*abs(x[i]-x[j])+abs(y[i]-y[j]);
                }
            }
            ll l = 0, r = 4e9+7, ans;
            for(int i = 0; i < 50; i++) {
                ll mid = l+r>>1LL;
                if(check(mid)) {
                    ans = mid;
                    r = mid-1;
                } else {
                    l = mid+1;
                }
            }
            printf("%lld
    ", ans);
        }
    }dlx;
    int main()
    {
        int t;
        cin>>t;
        for(int i = 1; i<=t; i++) {
            printf("Case #%d: ", i);
            dlx.solve();
        }
        return 0;
    }
  • 相关阅读:
    HDU 4893 线段树
    Catalan数推导(转载)
    URAL 1992
    小乐乐吃糖豆
    排列组合问题总结
    G
    F
    C
    D
    B
  • 原文地址:https://www.cnblogs.com/yohaha/p/5704563.html
Copyright © 2020-2023  润新知