• 排序查询算法(一)


    冒泡排序

    # coding:utf-8
    
    def bubble_sort(alist):
        """冒泡排序"""
        nums = len(alist) - 1  # 要执行的次数
        while nums:
            for i in range(nums):
                if alist[i] > alist[i+1]:
                    alist[i], alist[i+1] = alist[i+1], alist[i]
            nums -= 1
    
        return alist
    
    
    if __name__ == "__main__":
        b = bubble_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(b)
    

    另一种方法

    # coding:utf-8
    
    def bubble_sort(alist):
        """冒泡排序"""
        nums = len(alist)
        count = 0  # 记录是否有进行数据交换
        for j in range(nums-1):  # 规定要执行的次数
            for i in range(0, nums-1-j):  # 规定每次执行比较的个数
                if alist[i] > alist[i+1]:
                    alist[i], alist[i+1] = alist[i+1], alist[i]
                    count += 1
            if count == 0:  # 说明该序列是有序的序列,不必进行后面的比较,直接返回
                return alist
    
        return alist
    
    
    if __name__ == "__main__":
        b = bubble_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(b)
    

    时间复杂度

    • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
    • 最坏时间复杂度:O(n2)
    • 稳定性:稳定

    改进:当传进来的顺序表是有序的时候

    # coding:utf-8
    
    
    def bubble_sort(alist):
        """冒泡排序"""
        nums = len(alist)
        count = 0  # 记录是否有进行数据交换
        for j in range(nums-1):  # 规定要执行的次数
            for i in range(0, nums-1-j):  # 规定每次执行比较的个数
                if alist[i] > alist[i+1]:
                    alist[i], alist[i+1] = alist[i+1], alist[i]
                    count += 1
            if count == 0:  # 说明该序列是有序的序列,不必进行后面的比较,直接返回
                return alist
    
        return alist
    
    
    if __name__ == "__main__":
        b = bubble_sort([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        print(b)
    

    选择排序

    # coding:utf-8
    
    def select_sort(alist):
        """选择排序"""
        n = len(alist)
        for j in range(n-1):  # 外层循环代表执行多少次
            min_index = j  # j: 0 ~ n-2 共n-1个数字
            for i in range(j, n):  # 内层循环表示每次从哪开始
                if alist[min_index] > alist[i]:
                    min_index = i
            alist[j], alist[min_index] = alist[min_index], alist[j]
        
        return alist
    
    
    if __name__ == "__main__":
        s = select_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(s)
    

    时间复杂度

    • 最优时间复杂度:O(n2)
    • 最坏时间复杂度:O(n2)
    • 稳定性:不稳定(考虑升序每次选择最大的情况)

    插入排序

    # coding:utf-8
    
    def insert_sort(alist):
        """插入排序"""
        n = len(alist)
        for j in range(1, n):  # 右边的部分
             for i in range(0, j):  # 左边的部分 i=[0 ~ n-1]
                 if alist[i] > alist[j]:
                     alist[i], alist[j] = alist[j], alist[i]
           
        return alist
    
    
    if __name__ == "__main__":
        i = insert_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(i)
    

    上面这种是错的,插入排序的思想是右边 无序部分 的值和左边 有序部分 的值的比较,而且是从左边 有序部分 的右边开始。因此应该改成这样:

    # coding:utf-8
    
    def insert_sort(alist):
        """插入排序"""
        n = len(alist)
        for j in range(1, n):  # 右边的部分
            for i in range(j, 0, -1):
                 if alist[i] > alist[j]:
                     alist[i], alist[j] = alist[j], alist[i]
          
        return alist
    
    
    if __name__ == "__main__":
        i = insert_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(i)
    

    优化:

    # coding:utf-8
    
    def insert_sort(alist):
        """插入排序"""
        n = len(alist)
        for j in range(1, n):  # 右边的部分
            i = j
            while i > 0:
                if alist[i-1] > alist[i]:
                    alist[i-1], alist[i] = alist[i], alist[i-1]
                    i -= 1
                else:
                    break
    
        return alist
    
    
    if __name__ == "__main__":
        i = insert_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(i)
    

    时间复杂度

    • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
    • 最坏时间复杂度:O(n2)
    • 稳定性:稳定

    希尔排序

    # coding:utf-8
    
    def shell_sort(alist):
        """希尔排序"""
        n = len(alist)
        gap = n//2  # 取对半
    
        while gap > 0:
            # 插入算法,与普通的插入算法的区别就是步长gap
            for j in range(gap, n):
                # j = [gap, gap+1, gap+2, gap+3]
                i = j
                while i > 0:
                    if alist[i] < alist[i-gap]:
                        alist[i], alist[i-gap] = alist[i-gap], alist[i]
                        i -= gap
                    else:
                        break
            # 缩短gap步长
            gap //= 2
    
        return alist
    
    
    if __name__ == "__main__":
        i = shell_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(i)
    

    时间复杂度

    • 最优时间复杂度:根据步长序列的不同而不同
    • 最坏时间复杂度:O(n2)
    • 稳定想:不稳定

    快速排序

    # coding:utf-8
    
    def quick_sort(alist, first, last):
        """快速排序"""
        if first >= last:
            return
    
        mid_value = alist[first]
        low = first
        high = last
    
        while low < high:
            while low < high and alist[high] >= mid_value:
                high -= 1
            alist[low] = alist[high]
    
            # low 右移
            while low < high and alist[low] < mid_value:
                low += 1
            alist[high] = alist[low]
        # 从循环退出时, low=high
        alist[low] = mid_value
        # 对low左边的列表排序
        quick_sort(alist, first, low-1)  # 对同一个列表的操作,写成这样"quick_sort(alist[:low-1])"相当于传入新的列表
        # 对low右边的列表排序
        quick_sort(alist, low+1, last)
    
    
    if __name__ == "__main__":
        li = [1, 3, 7, 2, 8, 9, 4, 5, 0, 6]
        quick_sort(li, 0, len(li)-1)
        print(li)
    

    时间复杂度

    • 最优时间复杂度:O(nlogn)
    • 最坏时间复杂度:O(n2)
    • 稳定性:不稳定

    归并排序

    # coding:utf-8
    
    def merge_sort(alist):
        """归并排序"""
        n = len(alist)
        if n <=1:
            return alist
        min = n//2
        # left 采用归并排序后形成的新的有序的列表
        left_li = merge_sort(alist[:min])
        # right 采用归并排序后形成的新的有序的列表
        right_li = merge_sort(alist[min:])
        # 将两个有序的子序列合并为一个新的整体
    
        # 左右列表的两个指针
        left_pointer, right_pointer = 0, 0
        # 存放结果的列表
        result = []
        while left_pointer < len(left_li) and right_pointer < len(right_li):
            if left_li[left_pointer] <= right_li[right_pointer]:  # 加等于号 = 是为了遇到相等值时,前面的值还是在前面(稳定)
                result.append(left_li[left_pointer])
                left_pointer += 1
            # elif left_li[left_pointer] > right_li[right_pointer]:
            else:
                result.append(right_li[right_pointer])
                right_pointer += 1
        # 不管左边还是右边走到头,退出循环,然后把与之对应的那一边的最后一个值加进来
        result += left_li[left_pointer:]
        result += right_li[right_pointer:]
    
        return result
    
    
    if __name__ == "__main__":
        i = merge_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
        print(i)
    

    易于理解的版本

    def merge_sort(alist):
        if len(alist) <= 1:
            return alist
        # 二分分解
        num = len(alist)/2
        left = merge_sort(alist[:num])
        right = merge_sort(alist[num:])
        # 合并
        return merge(left,right)
    
    def merge(left, right):
        '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''
        #left与right的下标指针
        l, r = 0, 0
        result = []
        while l<len(left) and r<len(right):
            if left[l] < right[r]:
                result.append(left[l])
                l += 1
            else:
                result.append(right[r])
                r += 1
        result += left[l:]
        result += right[r:]
        return result
    
    alist = [54,26,93,17,77,31,44,55,20]
    sorted_alist = mergeSort(alist)
    print(sorted_alist)
    

    时间复杂度

    • 最优时间复杂度:O(nlogn)
    • 最坏时间复杂度:O(nlogn)
    • 稳定性:稳定

    二分查找

    # coding:utf-8
    
    def binary_search(alist, item):
        """二分查找 递归"""
        n = len(alist)
        if n > 0:
            min = n//2
            if item == alist[min]:
                return True
            elif item < alist[min]:
                return binary_search(alist[:min], item)
            else:
                return binary_search(alist[min+1:], item)
        else:
            return False
    
    
    def binary_search2(alist, item):
        """二分查找  非递归"""
        n = len(alist)
        first = 0
        last = n-1
        while first <= last:
            min = (first + last)//2
            if item == alist[min]:
                return True
            elif item < alist[min]:
                last = min -1
            else:
                first = min + 1
        return False
    
    
    if __name__ == "__main__":
        print(binary_search([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5))
        print(binary_search([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 10))
        print(binary_search2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5))
        print(binary_search2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 10))
    

    时间复杂度

    • 最优时间复杂度:O(1)
    • 最坏时间复杂度:O(logn)

    二叉树的定义和广度优先遍历和深度优先遍历

    # coding:utf-8
    
    class Node(object):
        """树的节点"""
        def __init__(self, item):
            self.elem = item
            self.lchild = None
            self.rchild = None
    
    
    class Tree(object):
        """二叉树"""
        def __init__(self):
            self.root = None
    
        def add(self, item):
            """树的插入"""
            node = Node(item)
            if self.root is None:
                self.root = node
                return
    
            queue = [self.root]
            while queue:
                cur_node = queue.pop(0)
                if cur_node.lchild is None:
                    cur_node.lchild = node
                    break
                else:
                    queue.append(cur_node.lchild)
                if cur_node.rchild is None:
                    cur_node.rchild = node
                    break
                else:
                    queue.append(cur_node.rchild)
    
        def breadth_travel(self):
            """广度遍历"""
            if self.root is None:
                return
            queue = [self.root]
            while queue:
                cur_node = queue.pop(0)
                print(cur_node.elem, end=" ")
                if cur_node.lchild is not None:
                    queue.append(cur_node.lchild)
                if cur_node.rchild is not None:
                    queue.append(cur_node.rchild)
    
        def preorder(self, node):
            """先序遍历"""
            if node is None:
                return
    
            print(node.elem, end=" ")
            self.preorder(node.lchild)
            self.preorder(node.rchild)
    
        def inorder(self, node):
            """中序遍历"""
            if node is None:
                return
    
            self.inorder(node.lchild)
            print(node.elem, end=" ")
            self.inorder(node.rchild)
    
        def postorder(self, node):
            """后序遍历"""
            if node is None:
                return
    
            self.postorder(node.lchild)
            self.postorder(node.rchild)
            print(node.elem, end=" ")
    
    
    if __name__ == "__main__":
        tree = Tree()
        tree.add(0)
        tree.add(1)
        tree.add(2)
        tree.add(3)
        tree.add(4)
        tree.add(5)
        tree.add(6)
        tree.add(7)
        tree.add(8)
        tree.add(9)
        tree.breadth_travel()
        print("\n")
        tree.preorder(tree.root)
        print("\n")
        tree.inorder(tree.root)
        print("\n")
        tree.postorder(tree.root)
    
  • 相关阅读:
    基础抽象代数
    斜堆
    WC2018
    WC2019
    有向图上不相交路径计数
    生成树计数
    Pr&#252;fer序列
    反演
    1.1 Linux中的进程 --fork、孤儿进程、僵尸进程、文件共享分析
    Python程序的执行过程 解释型语言和编译型语言
  • 原文地址:https://www.cnblogs.com/yly123/p/11321334.html
Copyright © 2020-2023  润新知