• 贝叶斯定理与Monty Hall难题


    一、曲奇饼问题

      假设有两个碗,碗1中有10个曲奇饼和20个香草饼,碗2中有10个曲奇饼和10个香草饼。现在你闭上眼睛拿到一个曲奇饼,问这个曲奇饼是从碗1中拿到的概率是多少?即P(碗1|曲奇) = ?。解决这种问题就需要贝叶斯定理。

    二、贝叶斯定理

    1、联合概率

      联合概率指的是两个事件同时发生的概率 P(AB)。假设王村90%的人都姓王,事件A为某人来自王村,事件B为某人姓王,显然有P(B|A) > P(B)。则某人来自王村并且姓王的概率为

    $$P(AB) = P(A)*P(B|A)$$

    2、贝叶斯定理(记住过程以后推导就可以了)

    $$P(AB)=P(BA)$$

    $$P(AB)=P(A)*P(B|A)$$

    $$P(BA)=P(B)*P(A|B)$$

    $$P(B)P(A|B)=P(A)P(B|A)$$

    $$P(A|B)=frac{P(A)P(B|A)}{P(B)}$$ 

    $$P(B_{1}|V)=frac{P(B_{1})P(V|B_{1})}{P(V)}$$

    因此对于曲奇饼问题,最后的结果为

    $$P(B_{1}|V)=frac{(1/2)*(1/3)}{5/12}= 2/5$$

    3、贝叶斯定理的另一种解释

    $$P(H|D)=frac{P(H)P(D|H)}{P(D)}$$

    • $P(H)$为先验概率,即在得到新数据前某一假设的概率。
    • $P(H|D)$为后验概率,即在看到新数据后,我们要计算的该假设概率
    • $P(D|H)$是该假设下得到这一数据的概率,称为似然度
    • $P(D)$ 是在任何假设下得到这一数据的概率,称为标准化常量。因此一般也用全概率公式来计算

    三、Monty Hall难题

    1、问题描述

    • 蒙蒂向你展示三个关闭的大门A、B、C。有一辆汽车藏在了一个大门之后。你猜中了车藏在了哪个大门后,你就能拿走汽车
    • 你先选一个门,记为A
    • 然后蒙蒂为了让你赢得汽车的机会大一些,他会在另外两个门B或C中,关闭一个没有汽车的门。我们将蒙蒂打开的大门假设为B
    • 最后到你了,在蒙蒂打开了门B后,问你是坚持开A门,还是打开C门,make your choice.

    对于Monty Hall Problem,有些人会错误的认为在蒙蒂开了一扇门后,剩下两个选择一个门后有车的概率为$1/2$,因为车不在A后就在C后。这种想法错误的原因在于

     事件B或C打开一个没有汽车的门 ≠ 事件选定一个门打开,并且这个门后没有车

     

    (设A、B、C为事件 车在对应门后。$P(A)=1/3$,所以车在B或C的概率为$2/3$。蒙蒂开了一个没车的门,那么我选C并且车在C后的概率仍然为$2/3$。所以经过思考过后,即使不使用贝叶斯公公式,我们也应该选择门C。)

    2、贝叶斯定理解决Monty Hall Problem

    假设事件D为蒙蒂选了B门,并且B门后没车。则 P(D) = 1/2*1 = 1/2。

    对于P(D)更详细的分析求法

    • A有车,然后B、C门选一个无车的门打开为事件D1。则P(D1)=1/3*1/2 = 1/6
    • A无车,然后B、C门选一个无车的门打开为事件D2。则P(D2)=2/3 * 1/2 * 1/2 + 2/3 * 1/2 * 1/2 = 1/3
    • 则P(D) = P(D1) + P(D2) = 1/2
    事件 先验概率P(H) 似然度P(D|H) 标准化常量P(D) 后验概率 P(H|D) = P(H) * P(D|H)/P(D)
    A 1/3 1/2 1/2 1/3
    B 1/3 0 1/2 0
    C 1/3 1 1/2 2/3

    所以应该选门C打开。

    参考《贝叶斯思维:统计建模的Python学习方法》

     

  • 相关阅读:
    06月14日总结
    06月11日总结
    高并发、高性能、高可用技术论述
    GCC制作静态库过程和使用
    每日总结
    GCC制作共享库过程和使用
    每日总结
    每日总结
    每日总结
    每日总结
  • 原文地址:https://www.cnblogs.com/ylxn/p/12662029.html
Copyright © 2020-2023  润新知