AdvancED ActionScript 3.0 Animation 是Keith Peters大师继"Make Things Move"之后的又一力作,网上已经有中文翻译版本了,打算下一阶段开始啃这本书。
今天开始学习高级碰撞检测,所用到的预备知识:
1、BitmapData的透明与不透明区别
位图数据(BitmapData)有二种模式,一种支持透明(即每个像素的值采用AARRGGBB这种32位颜色表示);另一种不支持透明度(即传统的RRGGBB这种24位颜色表示,简单点讲就是alpha分量默认为FF,且不能修改),下面这个示例说明了区别:
package { import flash.display.Bitmap; import flash.display.BitmapData; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.geom.Rectangle; [SWF(height="400",width="300")] public class BitmapCompare extends Sprite { public function BitmapCompare() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; //随机在舞台上划一些线条 graphics.lineStyle(0); for (var i:int=0; i<100; i++) { graphics.lineTo(Math.random()*300,Math.random()*400); } //创建一个不透明的位图 var bmpd1:BitmapData=new BitmapData(300,200,false,0xffff99); bmpd1.fillRect(new Rectangle(100,50,100,100),0xff0000);//注意:因为不透明的,所以颜色是24位的,没有alpha分量 var bmp1:Bitmap=new Bitmap(bmpd1); addChild(bmp1); //创建一个支持透明的位图 var bmpd2:BitmapData=new BitmapData(300,200,true,0x80ffff99);//注:默认为50%透明的ff9颜色 bmpd2.fillRect(new Rectangle(100,50,100,100),0x80ff0000);//注:此处为32位颜色 var bmp2:Bitmap=new Bitmap(bmpd2); bmp2.y=200; addChild(bmp2); } } }
可以看到,上半部分的位图因为不支持透明,所以将背后的线条全部挡住了。
2、五角星的画法
先来看一个beginFill方法的神奇之处
graphics.lineStyle(0); graphics.beginFill(0xffff99); graphics.moveTo(10,10); //注意下面只划了二条边 graphics.lineTo(10,100); graphics.lineTo(100,100); //graphics.lineTo(10,10); //注:正是因为上面的graphics.beginFill(0xffff99);所以这条线flash会为我们自动补齐
注意:虽然只画了二条线,但由于应用了begeinFill方法,flash自动生成了第三条线,形成了一个封闭的三角形.
回到正题,将一个圆周等分为10份,然后交替用不同的半径值结合三角函数,就能画出一个五角星
var angleBase:Number=Math.PI*2/10; var radius:uint=100; var r2:uint; var i:uint; var px,py:Number; var starline:Sprite = new Sprite(); starline.graphics.lineStyle(0); for (i=0; i<10; i++) { r2=radius; if (i%2==0) { r2=radius/2; } starline.graphics.moveTo(0,0); px=r2*Math.cos(angleBase*i); py=r2*Math.sin(angleBase*i); starline.graphics.lineTo(px,py); } addChild(starline); starline.x=stage.stageWidth/2; starline.y=stage.stageHeight/2; var star:Sprite = new Sprite(); star.graphics.lineStyle(1,0xff0000); star.graphics.beginFill(0xffff99); star.graphics.moveTo(radius/2,0); for (i=0; i<10; i++) { r2=radius; if (i%2==0) { r2=radius/2; } px=r2*Math.cos(angleBase*i); py=r2*Math.sin(angleBase*i); star.graphics.lineTo(px,py); } //star.graphics.lineTo(radius/2,0); addChild(star); star.x=stage.stageWidth/2; star.y=stage.stageHeight/2; star.alpha = 0.5;
当然,封装成一个单独的类会更好,下面是Star.as的完整代码,以后会经常用到这个类
package { import flash.display.Sprite; public class Star extends Sprite { public function Star(radius:Number,color:uint=0xFFFF00):void { graphics.lineStyle(0); graphics.moveTo(radius,0); graphics.beginFill(color); for (var i:int=1; i < 11; i++) { var radius2:Number=radius; if (i%2>0) { radius2=radius/2; } var angle:Number=Math.PI*2/10*i; graphics.lineTo(Math.cos(angle) * radius2,Math.sin(angle) * radius2); } } } }
3、矩阵的运用(将上面的五角星转化为BitmapData)
可能有人注意到了,上面的五角星图形,其注册中心点是五角星正中心,所以直接用bitmapData的draw把它画出来,将只能显示一部分:
var bmd1:BitmapData = new BitmapData(100,100,false,0xffefefef); bmd1.draw(star1); var bmp1:Bitmap = new Bitmap(bmd1); addChild(bmp1); bmp1.x = bmp1.y = 10; var bmd2:BitmapData = new BitmapData(100,100,false,0xffefefef); var m:Matrix = new Matrix(); trace(m.a,m.b,m.c,m.d,m.tx,m.ty);//1 0 0 1 0 0 m.tx = 50; m.ty = 50; trace(m.a,m.b,m.c,m.d,m.tx,m.ty);//1 0 0 1 50 50 bmd2.draw(star1,m); //等效于 //bmd2.draw(star1,new Matrix(1,0,0,1,50,50)) var bmp2:Bitmap = new Bitmap(bmd2); addChild(bmp2); bmp2.x = bmp1.x + 110; bmp2.y = bmp1.y;
如上,为了能完整的用位图"画"出五星,需要将星星向左、向下移动一定的位置,即前面提到的矩阵变换。
ok,下面才是真正的开始,先来看下位图之间的碰撞检测:
package { import flash.display.Bitmap; import flash.display.BitmapData; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.MouseEvent; import flash.filters.GlowFilter; import flash.geom.Matrix; import flash.geom.Point; public class BitmapCollision1 extends Sprite { private var bmpd1:BitmapData; private var bmp1:Bitmap; private var bmpd2:BitmapData; private var bmp2:Bitmap; public function BitmapCollision1() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; var matrix:Matrix = new Matrix(); var radius:uint = 50; matrix.tx = radius; matrix.ty = radius; var star:Star=new Star(radius); bmpd1=new BitmapData(100,100,true,0); bmpd1.draw(star,matrix); bmp1=new Bitmap(bmpd1); bmp1.x=200; bmp1.y=200; addChild(bmp1); bmpd2=new BitmapData(100,100,true,0); bmpd2.draw(star,matrix); bmp2=new Bitmap(bmpd2); addChild(bmp2); stage.addEventListener(MouseEvent.MOUSE_MOVE,onMouseMoving); } private function onMouseMoving(event:MouseEvent):void { bmp2.x=mouseX-50; bmp2.y=mouseY-50; if (bmpd1.hitTest(new Point(bmp1.x,bmp1.y),255,bmpd2,new Point(bmp2.x,bmp2.y),255)) { bmp1.filters=[new GlowFilter]; bmp2.filters=[new GlowFilter]; } else { bmp1.filters=[]; bmp2.filters=[]; } } } }
这里我们用二个BitmapData“画”出二个星星,再进一步得到二个Bitmap,并加入舞台上。然后调用BitmapData的hitTest方法,检测二个星星之间的碰撞。
注意这里的:if
(bmpd1.hitTest(
new
Point(bmp1.x,bmp1.y),
255
,bmpd2,
new
Point(bmp2.x,bmp2.y),
255
)) {
对于这二个星星而言,画到的地方便是完整不透明,没画到的空白地方即是完整透明(不存在类似渐变中的过渡情况),这里的二个255,代表检测时的alpha分量依据,通俗点讲:即只有完全不透明的地方碰到了,才返回true。
为了对histTest方法中“alpha分量参数”有更好的理解,上面的示例可改进为下面这样:
package { import flash.display.Bitmap; import flash.display.BitmapData; import flash.display.GradientType; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.MouseEvent; import flash.filters.GlowFilter; import flash.geom.Matrix; import flash.geom.Point; import fl.events.SliderEvent; public class BitmapCollision2 extends Sprite { private var bmpd1:BitmapData; private var bmp1:Bitmap; private var bmpd2:BitmapData; private var bmp2:Bitmap; public function BitmapCollision2() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; var star:Star=new Star(50); var matrix:Matrix = new Matrix(); matrix.createGradientBox(100, 100, 0, -50, -50); var circle:Sprite = new Sprite(); //画一个渐变填充的圆 circle.graphics.beginGradientFill(GradientType.RADIAL,[0, 0],[1, 0],[0, 255],matrix); circle.graphics.drawCircle(0, 0, 50); circle.graphics.endFill(); bmpd1=new BitmapData(100,100,true,0); bmpd1.draw(star, new Matrix(1, 0, 0, 1, 50, 50)); bmp1=new Bitmap(bmpd1); bmp1.x=stage.stageWidth/2 - bmp1.width/2; bmp1.y=stage.stageHeight/2 - bmp1.height/2; addChild(bmp1); bmpd2=new BitmapData(100,100,true,0); bmpd2.draw(circle, new Matrix(1, 0, 0, 1, 50, 50)); bmp2=new Bitmap(bmpd2); addChild(bmp2); stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMoving); //slider1,slider2是舞台上用设计工具拖出来的二个滑动控件 slider2.addEventListener(SliderEvent.THUMB_DRAG,slider2Change); slider1.addEventListener(SliderEvent.THUMB_DRAG,slider1Change); } private function slider1Change(e:SliderEvent):void { txt1.text = e.value.toString(); } private function slider2Change(e:SliderEvent):void { txt2.text = e.value.toString(); } private function onMouseMoving(event:MouseEvent):void { if (mouseY>320){return;}//防止小球拖到太下面,挡住了滑块 bmp2.x=mouseX-50; bmp2.y=mouseY-50; if (bmpd1.hitTest(new Point(bmp1.x,bmp1.y),slider1.value,bmpd2,new Point(bmp2.x,bmp2.y),slider2.value)) { bmp1.filters = [new GlowFilter()]; bmp2.filters = [new GlowFilter()]; } else { bmp1.filters=[]; bmp2.filters=[]; } } } }
调整第二个滑块,然后再测试碰撞效果,体会alpha参数在其中的作用,值得一提的是:因为星星没有类似渐变的填充,要么透明,要么不透明,所以第一个滑块在1-255之间的值,对碰撞结果没有影响,除非设置为0才会有变化.(设置为0时,相当于把星星所对应的矩形边界当做整体在检测)
通常在实际应用中,可能舞台上更多的是movieClip或sprite,而不是bitmap对象,如果您已经看懂了上面的二个示例,相信“对于MovieClip/Sprite之间的精确碰撞检测”也一定有思路了:构造对应的BitmapData,然后将movieclip或sprite,draw到bitmapData中,然后参考上面的代码处理。
不过,这里有一个小技巧:因为我们最终需要的可能只是碰撞检测的结果,而并不是真的想要在舞台上显示Bitmap,所以在实际操作中,bitmapData甚至都不用加入到显示列表
package { import flash.display.BitmapData; import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.MouseEvent; import flash.filters.GlowFilter; import flash.geom.Matrix; import flash.geom.Point; public class BitmapCollision3 extends Sprite { private var bmpd1:BitmapData; private var bmpd2:BitmapData; private var star1:Star; private var star2:Star; public function BitmapCollision3() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; star1=new Star(50); addChild(star1); star2=new Star(50); star2.x=200; star2.y=200; addChild(star2); bmpd1=new BitmapData(stage.stageWidth,stage.stageHeight,true,0); bmpd2=bmpd1.clone(); stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMoving); //注:这里bmpd1,bmpd2都没被转成bitmap,更没有加入到舞台中. } private function onMouseMoving(event:MouseEvent):void { star1.x=mouseX; star1.y=mouseY; //先清空bitmapData中的数据,准备一个完全透明的黑"底板"。 bmpd1.fillRect(bmpd1.rect, 0); bmpd2.fillRect(bmpd2.rect, 0); //再把要检测的(movieclip或sprite)对象,画到里面. bmpd1.draw(star1, new Matrix(1, 0, 0, 1, star1.x, star1.y)); bmpd2.draw(star2, new Matrix(1, 0, 0, 1, star2.x, star2.y)); //碰撞检测 //注意:因为bmpd1,bmpd2都没被加入到舞台上,所以默认都在同样的0坐标位置,因此下面的坐标,直接用默认的Point对象实例即可. if (bmpd1.hitTest(new Point(), 255, bmpd2, new Point(), 255)) { star1.filters = [new GlowFilter()]; star2.filters = [new GlowFilter()]; } else { star1.filters=[]; star2.filters=[]; } } } }
最终的运行效果,跟之前的示例没有区别,就不重复贴出了
继续,考虑更复杂的大量对象的碰撞问题,前一阵我们刚学习过“Flash/Flex学习笔记(41):碰撞检测”,但是没有考虑到大量对象时的性能问题。
计算一下:10个物体处理碰撞时,每个物体都要与其它物体做碰撞检测,最终需要的处理次数为 10*9/2 = 45次(数学中的组合问题) ;如果100个物体,就要处理 100*99/2 = 4950次!
这么大的计算量,每一帧都要处理一遍,AS3.0性能再强也是撑不住的!
但实际上,我们静下心来想想:大量对象随机分布在舞台上,实际上每个对象只有可能与自身附近的对象发生碰撞,对于那边离自己很远,甚至八杆子打不着的对象,根本没必要跟他们做碰撞检测计算。所以,其实真正需要的计算量应该可以减少很多!
如上图,首先可以先将舞台看成一个网格(每个单元格的大小,至少要大于舞台上尺寸最大的对象,即至少要能容纳下块头最大的一个对象)
这样的话,每个对象都会被划分到对应的格子里,而且只有可能与“身处在同一个格子里的其它对象”以及“相临格子里的其它对象”发生碰撞。
我们用遍历的思路(从左向右,从上到下)来分析一下:
先从第一行第一列开始(如上图中的第一排第一个示例),黑色的表示当前要考虑的单元格,很明显:在行1列1的位置,可能与之发生碰撞只有相临的浅灰色单元格,其它白色单元格是不可能与它发生碰撞的。
继续向右走,到了上图中第一排第二个小图的位置,这里能够与它发生单元格的只有其它4个浅灰色单元格(注:左侧的单元格在前面的检测中已经处理过了,所以这里就可以无视左侧相临的单元格!)
同理,继续向右,直到第一行全部遍历完成。
再继续向下,考查第二行:
因为第一行已经全部处理过了,所以在考查第二行时,可以继续无视上面的单元格,同时再忽略左侧的单元格(道理与第一行相同)
如此这般... 直到最后一行最后一列全部考查完毕。
总结:从刚才的分析可以知道,不管在哪一行哪一列,最多只需要关注(包含自身的)5个单元格--自身、右侧、下侧、左下、右下。
为了方便起见,我们还是用小球来做为基本对象,下面是Ball.cs的代码(相对以前的写法而言,更加OO了)
package { import flash.display.Sprite; public class Ball extends Sprite { private var _color:uint; private var _radius:Number; private var _vx:Number=0; private var _vy:Number=0; public function Ball(radius:Number, color:uint = 0xffffff) { _radius=radius; _color=color; draw(); } private function draw():void { graphics.clear(); graphics.lineStyle(0); graphics.beginFill(_color, 1); graphics.drawCircle(0, 0, _radius); graphics.endFill(); graphics.drawCircle(0, 0, 1);//在中心画一个点 } public function update():void { x+=_vx; y+=_vy; } public function set color(value:uint):void { _color=value; draw(); } public function get color():uint { return _color; } public function set radius(value:Number):void { _radius=value; draw(); } public function get radius():Number { return _radius; } public function set vx(value:Number):void { _vx=value; } public function get vx():Number { return _vx; } public function set vy(value:Number):void { _vy=value; } public function get vy():Number { return _vy; } } }
ok,下面是完整的代码,请大家在仔细阅读/调试后,重点比较一下100个小球处理完毕所用的总次数。
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.MouseEvent; import flash.text.TextField; public class GridCollision extends Sprite { private const GRID_SIZE:Number=30;//单元格大小(这里设置为小于的直径,即正好容纳一个小球) private const RADIUS:Number=15;//小球的半径 private var _balls:Array; private var _grid:Array; private var _numBalls:int=100;//小球数量 private var _numChecks:int=0;//检测次数 private var _txt:TextField = new TextField(); public function GridCollision() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; makeBalls();//创建一堆小球 makeGrid();// drawGrid(); assignBallsToGrid(); checkGrid(); //显示计数器 trace(_numChecks); addChild(_txt); _txt.background = true; _txt.backgroundColor=0xffff99; _txt.height = 20; _txt.width = 30; _txt.alpha = 0.7; stage.addEventListener(MouseEvent.MOUSE_DOWN,mouseDownClick); } private function mouseDownClick(e:MouseEvent):void{ for (var i:int=0; i<_numBalls; i++) { var ball:Ball=_balls[i]; ball.x=Math.random()*stage.stageWidth; ball.y=Math.random()*stage.stageHeight; ball.color = 0xffffff; } _numChecks=0; makeGrid();// drawGrid(); assignBallsToGrid(); checkGrid(); } //创建_numBalls个小球实例,并随机摆放到舞台上 private function makeBalls():void { _balls=new Array ; for (var i:int=0; i<_numBalls; i++) { var ball:Ball=new Ball(RADIUS); ball.x=Math.random()*stage.stageWidth; ball.y=Math.random()*stage.stageHeight; addChild(ball); _balls.push(ball); } } private function makeGrid():void { _grid=new Array ; for (var i:int=0; i<stage.stageWidth/GRID_SIZE; i++) {//计算网格列数 _grid[i]=new Array ; for (var j:int=0; j<stage.stageHeight/GRID_SIZE; j++) {//计算网格行数 _grid[i][j]=new Array ;//每个单元格对应一个数组(用来存放该单元格中的小球) } } } private function drawGrid():void { // 画出行列线 graphics.lineStyle(0,.5); for (var i:int=0; i<=stage.stageWidth; i+=GRID_SIZE) { graphics.moveTo(i,0); graphics.lineTo(i,stage.stageHeight); } for (i=0; i<=stage.stageHeight; i+=GRID_SIZE) { graphics.moveTo(0,i); graphics.lineTo(stage.stageWidth,i); } } private function assignBallsToGrid():void { for (var i:int=0; i<_numBalls; i++) { // 球的位置除以格子大小,得到该球所在网格的行列数 var ball:Ball=_balls[i] as Ball; var xpos:int=Math.floor(ball.x/GRID_SIZE); var ypos:int=Math.floor(ball.y/GRID_SIZE); _grid[xpos][ypos].push(ball);//将小球推入对应单元格数组 } } private function checkGrid():void { for (var i:int=0; i<_grid.length; i++) { for (var j:int=0; j<_grid[i].length; j++) { checkOneCell(i,j);//单元格cell_self自身的碰撞检测 checkTwoCells(i,j,i+1,j);//单元格cell_self与单元格cell_right(右侧)的碰撞检测 checkTwoCells(i,j,i-1,j+1);//单元格cell_self与单元格cell_left_bottom(左下角)的碰撞检测 checkTwoCells(i,j,i,j+1);//单元格cell_self与单元格cell_bottom(下侧)的碰撞检测 checkTwoCells(i,j,i+1,j+1);//单元格cell_self与单元格cell_right_bottom(右下角)的碰撞检测 } } } //cellSelf与自身的检测 private function checkOneCell(x:int,y:int):void { // 检测当前格子内所有的对象 var cell:Array=_grid[x][y] as Array; for (var i:int=0; i<cell.length-1; i++) { var ballA:Ball=cell[i] as Ball; for (var j:int=i+1; j<cell.length; j++) { var ballB:Ball=cell[j] as Ball; checkCollision(ballA,ballB); } } } //cellSelf与其它单元格的检测 private function checkTwoCells(x1:int,y1:int,x2:int,y2:int):void { //确保要检测的格子存在 if (x2<0) { return; } if (x2>=_grid.length) { return; } if (y2>=_grid[x2].length) { return; } var cell0:Array=_grid[x1][y1] as Array; var cell1:Array=_grid[x2][y2] as Array; // 检测当前格子和邻接格子内所有的对象 for (var i:int=0; i<cell0.length; i++) { var ballA:Ball=cell0[i] as Ball; for (var j:int=0; j<cell1.length; j++) { var ballB:Ball=cell1[j] as Ball; checkCollision(ballA,ballB); } } } private function checkCollision(ballA:Ball,ballB:Ball):void { // 判断距离的碰撞检测 _numChecks++;//计数器累加 _txt.text = _numChecks.toString(); var dx:Number=ballB.x-ballA.x; var dy:Number=ballB.y-ballA.y; var dist:Number=Math.sqrt(dx*dx+dy*dy); if (dist<ballA.radius+ballB.radius) { //碰撞的小球变红色 ballA.color=0xff0000; ballB.color=0xff0000; } } } }
上面的示例中,左上角的textField显示的是处理总次数(可以看到,大概在100-150次之间,这比优化前的理论值100*99/2 = 4950减少了90%都不止!)
需要指出的是:计算次数具体能减少多少,取决于网络(单元格)大小、flash舞台(场景)大小、对象个数、对象的大小;改变其中一个或几个参数,上面的测试结果都将改变。
再来认真的考虑一下性能问题,虽然用网格算法有效减少了计算次数,但是却多出了创建网格,把对象分配进单元格,遍历网络等操作,这些处理也同样要占用CPU资源,那么到底这些多余的操作影响多大?(或者也可能理解为在什么情况下,网络算法相对传统的(基于每两个对象之间的)两两检测更适用)
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.events.MouseEvent; import flash.text.TextField; import fl.controls.Slider; import flash.utils.getTimer; import fl.events.SliderEvent; public class GridCollision extends Sprite { private const GRID_SIZE:Number=20;//单元格大小(这里设置为小于的直径,即正好容纳一个小球) private const RADIUS:Number=10;//小球的半径 private var _balls:Array; private var _grid:Array; private var _numBalls:int=50;//小球数量 private var _txtGrid:TextField = new TextField(); private var _txtBasic:TextField = new TextField(); private var _slider:Slider = new Slider(); public function GridCollision() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; makeGrid(); drawGrid(); addChild(_slider); addChild(_txtGrid); addChild(_txtBasic); test(); _slider.addEventListener(SliderEvent.THUMB_DRAG,sliderGrag); stage.addEventListener(MouseEvent.CLICK,stageClick); } private function test(isClear:Boolean=false):void { var i:int=0; if (isClear) { for (i=numChildren-1; i>=0; i--) { removeChild(getChildAt(i)); } _balls.length=0; } _txtGrid.background=_txtBasic.background=true; _txtGrid.backgroundColor=_txtBasic.backgroundColor=0xffff99; _txtBasic.height=_txtGrid.height=20; _txtBasic.width=_txtGrid.width=135; _txtBasic.alpha=_txtGrid.alpha=0.9; _txtBasic.x=stage.stageWidth-_txtBasic.width; _slider.maximum=300; _slider.minimum=30; _slider.snapInterval=10; _slider.y=10; _slider.value=_numBalls; _slider.width=200; _slider.x=stage.stageWidth/2-_slider.width/2; makeBalls();//创建一堆小球 var startTime:int; var elapsed:int; startTime=getTimer(); for (i=0; i<10; i++) { makeGrid(); assignBallsToGrid(); checkGrid(); } elapsed=getTimer()-startTime; trace("网格检测:",elapsed); _txtGrid.text=_numBalls+"个球网络检测:"+elapsed.toString(); startTime=getTimer(); for (i=0; i<10; i++) { basicCheck(); } elapsed=getTimer()-startTime; trace("两两检测:",elapsed); _txtBasic.text=_numBalls+"个球两两检测:"+elapsed.toString(); if (isClear) { addChild(_txtBasic); addChild(_txtGrid); addChild(_slider); } } private function sliderGrag(e:SliderEvent):void { _numBalls=e.value; trace("sliderGrag"); } private function stageClick(e:MouseEvent):void { trace("stageClick"); test(true); } //创建_numBalls个小球实例,并随机摆放到舞台上 private function makeBalls():void { _balls=new Array ; for (var i:int=0; i<_numBalls; i++) { var ball:Ball=new Ball(RADIUS); ball.x=Math.random()*stage.stageWidth; ball.y=Math.random()*stage.stageHeight; addChild(ball); ball.alpha=0.5; _balls.push(ball); } } private function makeGrid():void { _grid=new Array ; for (var i:int=0; i<stage.stageWidth/GRID_SIZE; i++) {//计算网格列数 _grid[i]=new Array ; for (var j:int=0; j<stage.stageHeight/GRID_SIZE; j++) {//计算网格行数 _grid[i][j]=new Array ;//每个单元格对应一个数组(用来存放该单元格中的小球) } } } private function drawGrid():void { // 画出行列线 graphics.lineStyle(0,0x999999); for (var i:int=0; i<=stage.stageWidth; i+=GRID_SIZE) { graphics.moveTo(i,0); graphics.lineTo(i,stage.stageHeight); } for (i=0; i<=stage.stageHeight; i+=GRID_SIZE) { graphics.moveTo(0,i); graphics.lineTo(stage.stageWidth,i); } } private function assignBallsToGrid():void { for (var i:int=0; i<_numBalls; i++) { // 球的位置除以格子大小,得到该球所在网格的行列数 var ball:Ball=_balls[i] as Ball; var xpos:int=Math.floor(ball.x/GRID_SIZE); var ypos:int=Math.floor(ball.y/GRID_SIZE); _grid[xpos][ypos].push(ball);//将小球推入对应单元格数组 } } private function checkGrid():void { for (var i:int=0; i<_grid.length; i++) { for (var j:int=0; j<_grid[i].length; j++) { checkOneCell(i,j);//单元格cell_self自身的碰撞检测 checkTwoCells(i,j,i+1,j);//单元格cell_self与单元格cell_right(右侧)的碰撞检测 checkTwoCells(i,j,i-1,j+1);//单元格cell_self与单元格cell_left_bottom(左下角)的碰撞检测 checkTwoCells(i,j,i,j+1);//单元格cell_self与单元格cell_bottom(下侧)的碰撞检测 checkTwoCells(i,j,i+1,j+1);//单元格cell_self与单元格cell_right_bottom(右下角)的碰撞检测 } } } //cellSelf与自身的检测 private function checkOneCell(x:int,y:int):void { // 检测当前格子内所有的对象 var cell:Array=_grid[x][y] as Array; for (var i:int=0; i<cell.length-1; i++) { var ballA:Ball=cell[i] as Ball; for (var j:int=i+1; j<cell.length; j++) { var ballB:Ball=cell[j] as Ball; checkCollision(ballA,ballB); } } } //cellSelf与其它单元格的检测 private function checkTwoCells(x1:int,y1:int,x2:int,y2:int):void { //确保要检测的格子存在 if (x2<0) { return; } if (x2>=_grid.length) { return; } if (y2>=_grid[x2].length) { return; } var cell0:Array=_grid[x1][y1] as Array; var cell1:Array=_grid[x2][y2] as Array; // 检测当前格子和邻接格子内所有的对象 for (var i:int=0; i<cell0.length; i++) { var ballA:Ball=cell0[i] as Ball; for (var j:int=0; j<cell1.length; j++) { var ballB:Ball=cell1[j] as Ball; checkCollision(ballA,ballB); } } } private function checkCollision(ballA:Ball,ballB:Ball):void { // 判断距离的碰撞检测 var dx:Number=ballB.x-ballA.x; var dy:Number=ballB.y-ballA.y; var dist:Number=Math.sqrt(dx*dx+dy*dy); if (dist<ballA.radius+ballB.radius) { //碰撞的小球变红色 ballA.color=0xff0000; ballB.color=0xff0000; } } //(最原始的)两两检测 private function basicCheck():void { for (var i: int=0; i < _balls.length - 1; i++) { var ballA:Ball=_balls[i] as Ball; for (var j: int=i+1; j < _balls.length; j++) { var ballB:Ball=_balls[j] as Ball; checkCollision(ballA, ballB); } } } } }
上面这个示例,我们把"网格检测算法"与传统的"两两检测算法"每个跑10次,然后输出所用的时间来进行比较,拖动滑块可以调整小球的数量,点击舞台可以重新计算。
反复比较可以发现,在小球数量接近100时,二种算法性能已经相差无已,在小球数量大于100的前提下,小球数量越多,网格算法性能越有优势。在对象数量较少的情况下,传统的两两检测算法反而更快!
所以网格算法仅适用于大量对象的碰撞检测!
如果考虑到代码重用,可以把这种算法封装一下:
package { import flash.display.DisplayObject; import flash.display.Graphics; import flash.events.EventDispatcher; public class CollisionGrid extends EventDispatcher { private var _checks:Vector.<DisplayObject>;//用于保存需要碰撞检测的对象(注:Vector.<T>相当于c#中的泛型数组) private var _grid:Vector.<Vector.<DisplayObject>>;//网格(注:这里用“一维数组套一维数组”的方法替代了原来的二维数组) private var _gridSize:Number; private var _height:Number; private var _numCells:int; private var _numCols:int; private var _numRows:int; private var _Number; public function CollisionGrid(Number, height:Number, gridSize:Number) { _width=width; _height=height; _gridSize=gridSize; _numCols=Math.ceil(_width/_gridSize);//计算总列数 _numRows=Math.ceil(_height/_gridSize);//计算总行数 _numCells=_numCols*_numRows;//单元格总数 } //画格子 public function drawGrid(graphics:Graphics):void { graphics.lineStyle(0, .5); for (var i:int = 0; i <= _width; i += _gridSize) { graphics.moveTo(i, 0); graphics.lineTo(i, _height); } for (i = 0; i <= _height; i += _gridSize) { graphics.moveTo(0, i); graphics.lineTo(_width, i); } } //将需要检测的对象(泛型)数组objects分配到网络 public function assign(objects:Vector.<DisplayObject>):void { var numObjects:int=objects.length; _grid=new Vector.<Vector.<DisplayObject>>(_numCells); _checks = new Vector.<DisplayObject>(); for (var i:int = 0; i < numObjects; i++) { var obj:DisplayObject=objects[i]; //注意:这里用“Grid.[索引]”(定位)的方式,替换了原来的“Grid.[列][行]”(单元格的定位)方式--回想一下bitmap位图中的像素索引就更容易理解了 var index:int=Math.floor(obj.y/_gridSize)*_numCols+Math.floor(obj.x/_gridSize); //“单元格”--延时实例化" if (_grid[index]==null) { _grid[index]=new Vector.<DisplayObject> ; } //将对象推入"单元格" _grid[index].push(obj); } //检测需要碰撞的对象,并保存到_checks数组 checkGrid(); } //"单元格"检测 private function checkGrid():void { for (var i:int = 0; i < _numCols; i++) { for (var j:int = 0; j < _numRows; j++) { checkOneCell(i, j); checkTwoCells(i, j, i + 1, j); checkTwoCells(i, j, i - 1, j + 1); checkTwoCells(i, j, i, j + 1); checkTwoCells(i, j, i + 1, j + 1); } } } //(自身)单个单元格的检测 private function checkOneCell(x:int, y:int):void { var cell:Vector.<DisplayObject>=_grid[y*_numCols+x]; if (cell==null) { return; } var cellLength:int=cell.length; for (var i:int = 0; i < cellLength - 1; i++) { var objA:DisplayObject=cell[i]; for (var j:int = i + 1; j < cellLength; j++) { var objB:DisplayObject=cell[j]; _checks.push(objA, objB); } } } //单元格(x1,y1)与单元格(x2,y2)的检测 private function checkTwoCells(x1:int, y1:int, x2:int, y2:int):void { if (x2>=_numCols||x2<0||y2>=_numRows) { return; } var cellA:Vector.<DisplayObject>=_grid[y1*_numCols+x1]; var cellB:Vector.<DisplayObject>=_grid[y2*_numCols+x2]; if (cellA==null||cellB==null) { return; } var cellALength:int=cellA.length; var cellBLength:int=cellB.length; for (var i:int = 0; i < cellALength; i++) { var objA:DisplayObject=cellA[i]; for (var j:int = 0; j < cellBLength; j++) { var objB:DisplayObject=cellB[j]; _checks.push(objA, objB); } } } public function get checks():Vector.<DisplayObject> { return _checks; } } }
注:除了单纯的封装以外,上面的代码还有三个重要的优化措施
1.用Vector(泛型数组)代替了Array数组
2.用一维数组嵌套取代了原来的二维数组
3.延时实例化避免了创建无用的"单元格"
用封装并优化后的代码重新测试下:
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.utils.getTimer; import flash.display.DisplayObject; import flash.events.MouseEvent; import flash.text.TextField; public class GridCollision2 extends Sprite { private const GRID_SIZE:Number=20; private const RADIUS:Number=10; private var _balls:Vector.<DisplayObject>;//这里用Vector代替了Array private var _grid:CollisionGrid; private var _numBalls:int=50; private var _text:TextField; public function GridCollision2() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _text = new TextField(); _text.background = true; _text.backgroundColor = 0xffff99; _text.width = 135; _text.height = 20; _text.alpha = 0.9; _grid=new CollisionGrid(stage.stageWidth,stage.stageHeight,GRID_SIZE); _grid.drawGrid(graphics); makeBalls(); addChild(_text); test(); stage.addEventListener(MouseEvent.CLICK,stageClick); } private function stageClick(e:MouseEvent):void { test(true); } private function test(isRestart:Boolean=false):void { if (isRestart) { for (var i:int=0; i<_numBalls; i++) { var ball:Ball=_balls[i] as Ball; ball.x=Math.random()*stage.stageWidth; ball.y=Math.random()*stage.stageHeight; ball.color = 0xffffff; } } var startTime:int; var elapsed:int; startTime=getTimer(); for (i=0; i<10; i++) { _grid.assign(_balls);//将所有需要检测的ball放入_grid.checks var numChecks:int=_grid.checks.length; for (var j:int=0; j<numChecks; j+=2) { checkCollision(_grid.checks[j] as Ball,_grid.checks[j+1] as Ball); } } elapsed=getTimer()-startTime; trace("Elapsed:",elapsed); _text.text = _numBalls + "个小球碰撞检测:" + elapsed.toString(); } //初始化小球实例 private function makeBalls():void { _balls=new Vector.<DisplayObject>(_numBalls); for (var i:int=0; i<_numBalls; i++) { var ball:Ball=new Ball(RADIUS); ball.x=Math.random()*stage.stageWidth; ball.y=Math.random()*stage.stageHeight; ball.alpha = 0.8; addChild(ball); _balls[i]=ball; } } //检测碰撞 private function checkCollision(ballA:Ball,ballB:Ball):void { var dx:Number=ballB.x-ballA.x; var dy:Number=ballB.y-ballA.y; var dist:Number=Math.sqrt(dx*dx+dy*dy); if (dist<ballA.radius+ballB.radius) { //(碰撞后的小球变红色) ballA.color=0xff0000; ballB.color=0xff0000; } } } }
对比之前未封装的示例,可以发现:执行时间缩短了近一半!说明优化的效果还是很不错的。
静态的碰撞检测可能比较没劲,可以再结合以前学到的知识,让小球动起来。
package { import flash.display.Sprite; import flash.display.StageAlign; import flash.display.StageScaleMode; import flash.display.DisplayObject; import flash.events.Event; public class GridCollision3 extends Sprite { private const GRID_SIZE:Number=20; private const RADIUS:Number=10; private var _balls:Vector.<DisplayObject>; private var _grid:CollisionGrid; private var _numBalls:int=100; public function GridCollision3() { stage.align=StageAlign.TOP_LEFT; stage.scaleMode=StageScaleMode.NO_SCALE; _grid=new CollisionGrid(stage.stageWidth,stage.stageHeight,GRID_SIZE); _grid.drawGrid(graphics); makeBalls(); addEventListener(Event.ENTER_FRAME, onEnterFrame); } function onEnterFrame(event:Event):void { updateBalls(); _grid.assign(_balls); var numChecks:int=_grid.checks.length; for (var j:int = 0; j < numChecks; j += 2) { checkCollision(_grid.checks[j] as Ball, _grid.checks[j + 1] as Ball); } } private function makeBalls():void { _balls=new Vector.<DisplayObject>(_numBalls); for (var i:int = 0; i < _numBalls; i++) { var ball:Ball=new Ball(RADIUS); ball.x=Math.random()*stage.stageWidth; ball.y=Math.random()*stage.stageHeight; ball.vx=Math.random()*4-2; ball.vy=Math.random()*4-2; addChild(ball); _balls[i]=ball; } } private function updateBalls():void { for (var i:int = 0; i < _numBalls; i++) { var ball:Ball=_balls[i] as Ball; ball.update(); if (ball.x<RADIUS) { ball.x=RADIUS; ball.vx*=-1; } else if (ball.x > stage.stageWidth - RADIUS) { ball.x=stage.stageWidth-RADIUS; ball.vx*=-1; } if (ball.y<RADIUS) { ball.y=RADIUS; ball.vy*=-1; } else if (ball.y > stage.stageHeight - RADIUS) { ball.y=stage.stageHeight-RADIUS; ball.vy*=-1; } ball.color=0xffffff; } } private function checkCollision(ballA:Ball, ballB:Ball):void { var dx:Number=ballB.x-ballA.x; var dy:Number=ballB.y-ballA.y; var dist:Number=Math.sqrt(dx*dx+dy*dy); if (dist<ballA.radius+ballB.radius) { ballA.color=0xff0000; ballB.color=0xff0000; } } } }
当然这种网格算法不仅仅只能用于上面提供的"实打实"的碰撞,其中只要是基于距离的对象检测,它都适用。
回顾一下以前做过的节点花园示例,当时因为粒子数量比较少,还看不出有什么性能问题,让我们把粒子数量弄得多一点,比如500,再来测试下:
package { import flash.display.Sprite; import flash.display.StageScaleMode; import flash.display.StageAlign; import flash.events.Event; import flash.geom.Point; [SWF(backgroundColor=0x000000,width="600",height="600",frameRate=100)] public class NodeGardenLines extends Sprite { private var particles:Array; private var numParticles:uint=300; private var minDist:Number=50; private var springAmount:Number=.001; public function NodeGardenLines() { init(); } private function init():void { stage.scaleMode=StageScaleMode.NO_SCALE; stage.align=StageAlign.TOP_LEFT; particles = new Array(); for (var i:uint = 0; i < numParticles; i++) { var particle:Ball=new Ball(2,0x00ff00,false); particle.x=Math.random()*stage.stageWidth; particle.y=Math.random()*stage.stageHeight; particle.vx=Math.random()*6-3; particle.vy=Math.random()*6-3; addChild(particle); particles.push(particle); } addEventListener(Event.ENTER_FRAME, onEnterFrame); var fps:FPSshow = new FPSshow(); addChild(fps); } private function onEnterFrame(event:Event):void { graphics.clear(); for (var i:uint = 0; i < numParticles; i++) { var particle:Ball=particles[i]; particle.x+=particle.vx; particle.y+=particle.vy; if (particle.x>stage.stageWidth) { particle.x=0; } else if (particle.x < 0) { particle.x=stage.stageWidth; } if (particle.y>stage.stageHeight) { particle.y=0; } else if (particle.y < 0) { particle.y=stage.stageHeight; } } for (i=0; i < numParticles - 1; i++) { var partA:Ball=particles[i]; for (var j:uint = i + 1; j < numParticles; j++) { var partB:Ball=particles[j]; spring(partA, partB); } } } private function spring(partA:Ball, partB:Ball):void { var dx:Number=partB.x-partA.x; var dy:Number=partB.y-partA.y; var dist:Number=Math.sqrt(dx*dx+dy*dy); if (dist<minDist) { graphics.lineStyle(1, 0xffffff, 1 - dist / minDist); graphics.moveTo(partA.x, partA.y); graphics.lineTo(partB.x, partB.y); var ax:Number=dx*springAmount; var ay:Number=dy*springAmount; partA.vx+=ax; partA.vy+=ay; partB.vx-=ax; partB.vy-=ay; } } } }
留意一下现在的帧数,下面是采用网格算法后的代码:
package { import flash.display.DisplayObject; import flash.display.Sprite; import flash.display.StageScaleMode; import flash.display.StageAlign; import flash.events.Event; import flash.geom.Point; [SWF(backgroundColor=0x000000,width="600",height="600",frameRate=100)] public class NodeGardenGrid extends Sprite { private var particles:Vector.<DisplayObject>; private var numParticles:uint=300; private var minDist:Number=50; private var springAmount:Number=.001; private var grid:CollisionGrid; public function NodeGardenGrid() { init(); } private function init():void { stage.scaleMode=StageScaleMode.NO_SCALE; stage.align=StageAlign.TOP_LEFT; grid=new CollisionGrid(stage.stageWidth,stage.stageHeight,52); particles = new Vector.<DisplayObject>(); for (var i:uint = 0; i < numParticles; i++) { var particle:Ball=new Ball(2,0x00ff00,false); particle.x=Math.random()*stage.stageWidth; particle.y=Math.random()*stage.stageHeight; particle.vx=Math.random()*6-3; particle.vy=Math.random()*6-3; addChild(particle); particles.push(particle); } addEventListener(Event.ENTER_FRAME, onEnterFrame); var fps:FPSshow = new FPSshow(); addChild(fps); } private function onEnterFrame(event:Event):void { graphics.clear(); for (var i:uint = 0; i < numParticles; i++) { var particle:Ball=particles[i] as Ball; particle.x+=particle.vx; particle.y+=particle.vy; if (particle.x>stage.stageWidth) { particle.x=0; } else if (particle.x < 0) { particle.x=stage.stageWidth; } if (particle.y>stage.stageHeight) { particle.y=0; } else if (particle.y < 0) { particle.y=stage.stageHeight; } } grid.assign(particles); var checks:Vector.<DisplayObject>=grid.checks; trace(checks.length); var numChecks:int=checks.length; for (i=0; i < numChecks; i += 2) { var partA:Ball=checks[i] as Ball; var partB:Ball=checks[i+1] as Ball; spring(partA, partB); } } private function spring(partA:Ball, partB:Ball):void { var dx:Number=partB.x-partA.x; var dy:Number=partB.y-partA.y; var dist:Number=Math.sqrt(dx*dx+dy*dy); if (dist<minDist) { graphics.lineStyle(1, 0x00ff00, 1 - dist / minDist); graphics.moveTo(partA.x, partA.y); graphics.lineTo(partB.x, partB.y); var ax:Number=dx*springAmount; var ay:Number=dy*springAmount; partA.vx+=ax; partA.vy+=ay; partB.vx-=ax; partB.vy-=ay; } } } }
如果用IE的朋友,貌似弹出窗口加载flash有些问题(偶尔会引发异常),建议用firefox或chrome浏览器浏览本文。
在firefox下加速效果最为明显,比较意外的是在chrome下居然二种算法帧数相差无已。(极度怀疑google与adobe协力对chrome浏览器上的flash插件做了极大的优化)