• 【线段树】【P2572】【SCOI2010】序列操作


    Description

    lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作:

    0 a b 把[a, b]区间内的所有数全变成0

    1 a b 把[a, b]区间内的所有数全变成1

    2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0

    3 a b 询问[a, b]区间内总共有多少个1

    4 a b 询问[a, b]区间内最多有多少个连续的1

    对于每一种询问操作,lxhgww都需要给出回答,聪明的程序员们,你们能帮助他吗?

    Input

    输入数据第一行包括2个数,n和m,分别表示序列的长度和操作数目

    第二行包括n个数,表示序列的初始状态

    接下来m行,每行3个数,op, a, b,(0<=op<=4,0<=a<=b<n)表示对于区间[a, b]执行标号为op的操作

    Output

    对于每一个询问操作,输出一行,包括1个数,表示其对应的答案

    Hint

    对于30%的数据,1<=n, m<=1000

    对于100%的数据,1<=n, m<=100000

    Solution

    测试题……睿智线段树……头一次写多标记线段树写了7k然后爆10分……最后发现标记传错了……

    考虑一个区间维护的信息显然有1的个数,连续1长度,左连续1,右连续1。0也同理。标记打上区间置零,赋一,取反。

    考虑pushdown操作。

    发现这三个标记只能同时存在一个,所以下传的顺序是无所谓的。但是需要考虑打标记的时候标记的重叠问题。具体的,在make_tag的时候,如果打赋1标记,若存在取反标记,则改为打赋0标记。同时把其余标记置为false。区间置0同理。

    考虑区间取反的时候,如果存在全部赋值标记,则将赋值标记取反,不打取反标记,否则将取反标记取反。因为把取反写成赋true爆10分了……

    大概就这样

    我好菜啊……写了7k只有10分

    Code

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #ifdef ONLINE_JUDGE
    #define freopen(a, b, c)
    #endif
    #define rg register
    #define ci const int
    #define cl const long long
    
    typedef long long int ll;
    
    namespace IPT {
    	const int L = 1000000;
    	char buf[L], *front=buf, *end=buf;
    	char GetChar() {
    		if (front == end) {
    			end = buf + fread(front = buf, 1, L, stdin);
    			if (front == end) return -1;
    		}
    		return *(front++);
    	}
    }
    
    template <typename T>
    inline void qr(T &x) {
    	rg char ch = IPT::GetChar(), lst = ' ';
    	while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    	while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    	if (lst == '-') x = -x;
    }
    
    template <typename T>
    inline void ReadDb(T &x) {
    	rg char ch = IPT::GetChar(), lst = ' ';
    	while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
    	while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
    	if (ch == '.') {
    		ch = IPT::GetChar();
    		double base = 1;
    		while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
    	}
    	if (lst == '-') x = -x;
    }
    
    namespace OPT {
    	char buf[120];
    }
    
    template <typename T>
    inline void qw(T x, const char aft, const bool pt) {
    	if (x < 0) {x = -x, putchar('-');}
    	rg int top=0;
    	do {OPT::buf[++top] = x % 10 + '0';} while ( x /= 10);
    	while (top) putchar(OPT::buf[top--]);
    	if (pt) putchar(aft);
    }
    
    const int maxn = 100010;
    const int maxt = 200010;
    
    int n, m;
    int MU[maxn];
    
    struct Tag {
    	bool zero,one,bk;
    	inline void clear() {
    		zero = one = bk = false;
    	}
    };
    
    struct Info {
    	int s0, s1, len0, len1, ll0, ll1, rl0, rl1;
    	
    	inline void buildit(int _v) {
    		if (_v == 1) {
    			len1 = ll1 = rl1 = s1 = 1;
    		} else {
    			len0 = ll0 = rl0 = s0 = 1;
    		}
    	}
    	
    	inline void clear() {
    		s0 = s1 = len0 = len1 = ll0 = ll1 = rl0 = rl1 = 0;
    	}
    	
    	inline Info operator+(const Info &_others) const {
    		Info _ret;
    		_ret.clear();
    		_ret.s0 = this->s0 + _others.s0;
    		_ret.s1 = this->s1 + _others.s1;
    		_ret.len0 = std::max(std::max(this->len0,_others.len0), this->rl0 + _others.ll0);
    		_ret.len1 = std::max(std::max(this->len1,_others.len1), this->rl1 + _others.ll1);
    		_ret.ll0 = this->ll0 + (!this->s1) * (_others.ll0);
    		_ret.ll1 = this->ll1 + (!this->s0) * (_others.ll1);
    		_ret.rl0 = _others.rl0 + (!_others.s1) * (this->rl0);
    		_ret.rl1 = _others.rl1 + (!_others.s0) * (this->rl1);
    		return _ret;
    	}
    	
    	inline void reset(ci k) {
    		if (k == 0) {
    			this->s0 = this->ll0 = this->len0 = this->rl0 = this->s0 + this->s1;
    			this->s1 = this->len1 = this->ll1 = this->rl1 = 0;
    		} else if (k == 1) {
    			this->s1 = this->ll1 = this->len1 = this->rl1 = this->s0 + this->s1;
    			this->s0 = this->len0 = this->ll0 = this->rl0 = 0;
    		} else {
    			std::swap(this->s0,this->s1);
    			std::swap(this->ll0,this->ll1);
    			std::swap(this->len0,this->len1);
    			std::swap(this->rl0,this->rl1);
    		}
    	}
    	
    };
    
    struct Tree {
    	Tree *ls, *rs;
    	int l, r;
    	Tag tg;
    	Info v;
    	
    	inline void pushup() {
    		this->v.clear();
    		if((this->ls) && (!this->rs)) this->v = this->ls->v;
    		else if((this->rs) && (!this->ls)) this->v = this->rs->v;
    		else this->v = this->ls->v + this->rs->v;
    	}
    	
    	inline void maketag(ci k) {
    		if(k == 0) {
    			this->tg.zero = true;
    			this->v.reset(0);
    			this->tg.one = this->tg.bk = false;
    		} else if(k == 1) {
    			this->tg.one = true;
    			this->v.reset(1);
    			this->tg.zero = this->tg.bk = false;
    		} else {
    			if(this->tg.one) {
    				this->v.reset(0);
    				std::swap(this->tg.one,this->tg.zero);
    			} else if(this->tg.zero) {
    				this->v.reset(1);
    				std::swap(this->tg.one,this->tg.zero);
    			} else {
    				this->v.reset(2);
    				this->tg.bk ^= 1;
    			}
    		}
    	}
    	
    	inline void pushdown() {
    		if (this->tg.zero) {
    			if(this->ls) this->ls->maketag(0);
    			if(this->rs) this->rs->maketag(0);
    		} else if (this->tg.one) {
    			if(this->ls) this->ls->maketag(1);
    			if(this->rs) this->rs->maketag(1);
    		} else if(this->tg.bk) {
    			if(this->ls) this->ls->maketag(2);
    			if(this->rs) this->rs->maketag(2);
    		}
    		this->tg.clear();
    	}
    };
    Tree *pool[maxt], qwq[maxt], *rot;
    int top;
    
    struct Ret {
    	int l,r,ans;
    	bool isall;
    	inline void clear() {
    		l = r = ans = isall = 0;
    	}
    };
    
    void buildpool();
    void buildroot();
    void build(Tree*, ci, ci);
    void update(Tree*, ci, ci, ci);
    int ask3(Tree*, ci, ci);
    Ret ask4(Tree*, ci, ci);
    
    int main() {
    	freopen("data.in", "r", stdin);
    	qr(n); qr(m);
    	for (rg int i = 1; i <= n; ++i) qr(MU[i]);
    	buildpool();
    	buildroot();
    	build(rot, 1, n);
    	int a, b, c;
    	while (m--) {
    		a = b = c = 0;
    		qr(a); qr(b); qr(c);
    		++b;++c;
    		switch(a) {
    			case 0: {
    				update(rot, b, c, 0);
    				break;
    			}
    			case 1: {
    				update(rot, b, c, 1);
    				break;
    			}
    			case 2: {
    				update(rot, b, c, 2);
    				break;
    			}
    			case 3: {
    				qw(ask3(rot, b, c), '
    ', true);
    				break;
    			}
    			case 4: {
    				qw(ask4(rot, b, c).ans, '
    ', true);
    				break;
    			}
    		}
    	}
    }
    
    void buildpool() {
    	for (rg int i = 0; i < maxt; ++i) pool[i] = qwq+i;
    	top = maxt - 1;
    }
    
    void buildroot() {
    	rot = pool[top--];
    	rot->l = 1; rot->r = n;
    }
    
    void build(Tree *u, ci l, ci r) {
    	if(l == r) {u->v.buildit(MU[l]); return;}
    	int mid = (l + r) >> 1;
    	if (l <= mid) {
    		u->ls = pool[top--];
    		u->ls->l = l; u->ls->r = mid;
    		build(u->ls, l, mid);
    	}
    	if(mid < r) {
    		u->rs = pool[top--];
    		u->rs->l = mid+1; u->rs->r = r;
    		build(u->rs, mid+1, r);
    	}
    	u->pushup();
    }
    
    void update(Tree *u, ci l, ci r, ci v) {
    	u->pushdown();
    	if((u->l >= l) && (u->r <= r)) {
    		u->maketag(v);return;
    	}
    	if((u->l > r) || (u->r < l)) return;
    	if(u->ls) update(u->ls, l, r, v);
    	if(u->rs) update(u->rs, l, r, v);
    	u->pushup();
    }
    
    int ask3(Tree *u, ci l, ci r) {
    	u->pushdown();
    	if((u->l >= l) && (u->r <= r)) return u->v.s1;
    	else if((u->l > r) || (u->r < l)) return 0;
    	int _ret = 0;
    	if(u->ls) _ret = ask3(u->ls, l ,r);
    	if(u->rs) _ret += ask3(u->rs, l, r);
    	return _ret;
    }
    
    Ret ask4(Tree *u, ci l, ci r) {
    	u->pushdown();
    	if((u->l >= l) && (u->r <= r)) {
    		return (Ret){u->v.ll1, u->v.rl1, u->v.len1, u->v.s0 == 0};
    	}
    	if((u->l > r) || (u->r < l)) {
    		return (Ret){0, 0, 0, 0};
    	}
    	Ret rl,rr,ret;
    	rl.clear();rr.clear();ret.clear();
    	if(u->ls) rl = ask4(u->ls, l, r);
    	if(u->rs) rr = ask4(u->rs, l, r);
    	ret.l = rl.l + rl.isall * rr.l;
    	ret.r = rr.r + rr.isall * rl.r;
    	ret.ans = std::max(std::max(rl.ans, rr.ans), rl.r + rr.l);
    	return ret;
    }
    

    Summary

    在多标记下传时,考虑下传顺序间的影响,以及下传新标记时,旧标记对新标记的影响。

    另外比赛时如果正解写挂一定要及时写暴力……

  • 相关阅读:
    洛谷 P1650 田忌赛马(dp)
    卡常技巧(持续更新)
    CF106C Buns(多重背包 单调队列优化)
    洛谷 P1385 密令(dp,离线)
    CF245H Queries for Number of Palindromes(dp,二维前缀和)
    CF1061C Multiplicity(dp)
    对拍技巧
    牛客练习赛89 解题报告(ABCDF)
    洛谷 P1018 [NOIP2000 提高组] 乘积最大(dp,高精度)
    洛谷 P5629 【AFOI-19】区间与除法(ST表)
  • 原文地址:https://www.cnblogs.com/yifusuyi/p/10046016.html
Copyright © 2020-2023  润新知