• Tensorflow框架学习(1)--CNN的实现


     1 # CNN神经网络的代码实现
     2 import tensorflow as tf
     3 # 导入数据集
     4 from tensorflow.examples.tutorials.mnist import input_data
     5 # number 1 to 10 data:读取数据
     6 mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
     7 
     8 sess = tf.Session()
     9 
    10 #计算准确率
    11 def compute_accuracy(v_xs, v_ys):
    12     global prediction
    13     y_pre = sess.run(prediction, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 0.5})   # keep_prob的设置是为了防止发生过拟合的现象
    14     correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
    15     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    16     result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 0.5})
    17     return result
    18 
    19 # 定义并初始化weight_variable
    20 def weight_variable(shape):
    21     initial = tf.truncated_normal(shape, stddev=0.1)
    22     return tf.Variable(initial)
    23 
    24 # 定义并初始化bias_variable
    25 def bias_variable(shape):
    26     initial = tf.constant(0.1, shape=shape)
    27     return tf.Variable(initial)
    28 
    29 #定义卷积层
    30 def conv2d(x,W):
    31     # strides=[1,x_movement,y_movement,1]
    32     # strides[0] = strides[3] = 0
    33     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
    34 
    35 #定义池化层
    36 def max_pool_2x2(x):
    37     # strides=[1,x_movement,y_movement,1]
    38     # strides[0] = strides[3] = 0
    39     # ksize=[1,x,x,1]:其中表示池化的大小
    40     # 在池化得我过程中,不能有重叠,否则会出现报错 --栽沟里了!!!
    41     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    42 
    43 # 定义placeholder for inputs to network,None表示输入的样本数待定
    44 xs = tf.placeholder(tf.float32, [None, 784])     # None表示输入的样本数待定(待定)
    45 ys = tf.placeholder(tf.float32, [None, 10])
    46 keep_prob = tf.placeholder(tf.float32)
    47 
    48 # 将输入的数据变换成矩阵的形式
    49 # 此时x_image表示的是[n_samples,28,28,1],其中1表示channel
    50 x_image = tf.reshape(xs, [-1, 28, 28, 1])        # -1表示输入的样本数待定(待定)
    51 
    52 # 定义conv1 layer--卷积层1
    53 # [5,5,1,32]
    54 # 5*5:patch size  1:channel  32:filter的数量
    55 W_conv1 = weight_variable([5, 5, 1, 32])
    56 b_conv1 = bias_variable([32])
    57 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #output_size:28*28*32
    58 h_pool1 = max_pool_2x2(h_conv1)                           #output_size:14*14*32
    59 
    60 # 定义conv2 layer
    61 # 32:第二层卷积中卷积核的深度   64:卷积核的个数
    62 W_conv2 = weight_variable([5, 5, 32, 64])
    63 b_conv2 = bias_variable([64])
    64 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #output_size:14*14*64
    65 h_pool2 = max_pool_2x2(h_conv2)                           #output_size:7*7*64
    66 
    67 
    68 # 定义func1 layer:全卷积层1
    69 W_fc1 = weight_variable([7*7*64, 1024])    #全连接层的in_size:7*7*64  out_size:1024
    70 b_fc1 = bias_variable([1024])
    71 # 将con2 layer的输出拉平:[n_sample,7,7,64] ->> [n_sample,7*7*64]
    72 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])        # -1表示输入的样本数(待定)
    73 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    74 # 为了防止出现过拟合,使用tf.nn.dropout()
    75 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    76 
    77 # 定义func2 layer
    78 W_fc2 = weight_variable([1024, 10])    #全连接层的in_size:1024  out_size:10(分类对应10个数据)
    79 b_fc2 = bias_variable([10])
    80 # 将con2 layer的输出拉平:[n_sample,7,7,64] ->> [n_sample,7*7*64]
    81 prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
    82 
    83 # the error between prediction and real data
    84 cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
    85 # 优化器的选择
    86 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    87 
    88 # 定义变量需要初始化所有的参数  -- very important
    89 sess.run(tf.initialize_all_variables())
    90 
    91 # 数据的训练
    92 for i in range(1000):
    93     batch_xs, batch_ys = mnist.train.next_batch(100)
    94     sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    95     if i % 50 == 0:
    96         #    每训练50次,计算一下准确略:函数需要自定义
    97         print(compute_accuracy(
    98             mnist.test.images, mnist.test.labels))

    说明:

      ①在实现CNN过程中,定义池化层的时候,由于strides设置错误([1, 1, 1, 1] ->>[1, 2, 2, 1]),导致在进行MaxPooling时出现重叠进而导致后续的运算出现矩阵维度不匹配的错误

      ②以上代码实在tensorflow1.13.0环境中运行的--采用的是符号式编程

  • 相关阅读:
    UWP 常用文件夹
    UWP 判断Windows10系统版本
    UWP 图片缩放
    Windows 10「设置」应用完整MS-Settings快捷方式汇总
    UWP 用Thumb 控件仿制一个可拖动悬浮 Button
    【mp3】洗脑循环了!龙珠超 自在极意功 【究极の圣戦】串田アキラ 背景纯音乐
    工作三年后的总结
    css3 移动端 开关效果
    js 移动端上拉加载下一页通用方案
    【我的上传番剧/电影】收藏夹
  • 原文地址:https://www.cnblogs.com/yif930916/p/14177283.html
Copyright © 2020-2023  润新知