• HDU 2883 kebab(最大流)


    HDU 2883 kebab

    题目链接

    题意:有一个烧烤机,每次最多能烤 m 块肉。如今有 n 个人来买烤肉,每一个人到达时间为 si。离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 di。注意一个烤肉能够切成几份来烤

    思路:把区间每一个点存起来排序后。得到最多2 * n - 1个区间,这些就表示几个互相不干扰的时间,每一个时间内仅仅可能有一个任务器做。这样建模就简单了。源点连向汇点,容量为任务须要总时间,区间连向汇点,容量为区间长度。然后每一个任务假设包括了某个区间,之间就连边容量无限大。最后推断一下最大流是否等于总任务须要时间就可以

    代码:

    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <algorithm>
    using namespace std;
    
    const int MAXNODE = 1005;
    const int MAXEDGE = 200005;
    
    typedef int Type;
    const Type INF = 0x3f3f3f3f;
    
    struct Edge {
    	int u, v;
    	Type cap, flow;
    	Edge() {}
    	Edge(int u, int v, Type cap, Type flow) {
    		this->u = u;
    		this->v = v;
    		this->cap = cap;
    		this->flow = flow;
    	}
    };
    
    struct Dinic {
    	int n, m, s, t;
    	Edge edges[MAXEDGE];
    	int first[MAXNODE];
    	int next[MAXEDGE];
    	bool vis[MAXNODE];
    	Type d[MAXNODE];
    	int cur[MAXNODE];
    	vector<int> cut;
    
    	void init(int n) {
    		this->n = n;
    		memset(first, -1, sizeof(first));
    		m = 0;
    	}
    	void add_Edge(int u, int v, Type cap) {
    		edges[m] = Edge(u, v, cap, 0);
    		next[m] = first[u];
    		first[u] = m++;
    		edges[m] = Edge(v, u, 0, 0);
    		next[m] = first[v];
    		first[v] = m++;
    	}
    
    	bool bfs() {
    		memset(vis, false, sizeof(vis));
    		queue<int> Q;
    		Q.push(s);
    		d[s] = 0;
    		vis[s] = true;
    		while (!Q.empty()) {
    			int u = Q.front(); Q.pop();
    			for (int i = first[u]; i != -1; i = next[i]) {
    				Edge& e = edges[i];
    				if (!vis[e.v] && e.cap > e.flow) {
    					vis[e.v] = true;
    					d[e.v] = d[u] + 1;
    					Q.push(e.v);
    				}
    			}
    		}
    		return vis[t];
    	}
    
    	Type dfs(int u, Type a) {
    		if (u == t || a == 0) return a;
    		Type flow = 0, f;
    		for (int &i = cur[u]; i != -1; i = next[i]) {
    			Edge& e = edges[i];
    			if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
    				e.flow += f;
    				edges[i^1].flow -= f;
    				flow += f;
    				a -= f;
    				if (a == 0) break;
    			}
    		}
    		return flow;
    	}
    
    	Type Maxflow(int s, int t) {
    		this->s = s; this->t = t;
    		Type flow = 0;
    		while (bfs()) {
    			for (int i = 0; i < n; i++)
    				cur[i] = first[i];
    			flow += dfs(s, INF);
    		}
    		return flow;
    	}
    
    	void MinCut() {
    		cut.clear();
    		for (int i = 0; i < m; i += 2) {
    			if (vis[edges[i].u] && !vis[edges[i].v])
    				cut.push_back(i);
    		}
    	}
    } gao;
    
    const int N = 405;
    
    int n, m;
    
    struct Man {
    	int l, r;
    } man[N];
    
    int p[N], pn;
    
    int s, nu, e, t;
    
    int main() {
    	while (~scanf("%d%d", &n, &m)) {
    		gao.init(3 * n + 2);
    		pn = 0;
    		int sum = 0;
    		for (int i = 1; i <= n; i++) {
    			scanf("%d%d%d%d", &s, &nu, &e, &t);
    			man[i].l = s; man[i].r = e;
    			p[pn++] = s; p[pn++] = e;
    			sum += nu * t;
    			gao.add_Edge(0, i, nu * t);
    		}
    		sort(p, p + pn);
    		for (int i = 1; i < pn; i++)
    			gao.add_Edge(n + i, 3 * n + 1, (p[i] - p[i - 1]) * m);
    		for (int i = 1; i <= n; i++) {
    			for (int j = 1; j < pn; j++) {
    				if (p[j - 1] > man[i].r) break;
    				if (man[i].l <= p[j - 1] && man[i].r >= p[j])
    					gao.add_Edge(i, j + n, INF);
    			}
    		}
    		printf("%s
    ", gao.Maxflow(0, 3 * n + 1) ==  sum ? "Yes" : "No");
    	}
    	return 0;
    }


  • 相关阅读:
    Android 课程设计
    第十个作业 简易通讯录
    第九个作业 QQ的账号密码保存
    第八个作业 QQ账号的保存
    第七个作业 Activity之间的数据回传
    第六个作业 应用列表
    第五个作业 背景换色
    JSP第一次作业
    安卓课设
    Android第八次作业
  • 原文地址:https://www.cnblogs.com/yfceshi/p/6732294.html
Copyright © 2020-2023  润新知