HDU 2883 kebab
题意:有一个烧烤机,每次最多能烤 m 块肉。如今有 n 个人来买烤肉,每一个人到达时间为 si。离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 di。注意一个烤肉能够切成几份来烤
思路:把区间每一个点存起来排序后。得到最多2 * n - 1个区间,这些就表示几个互相不干扰的时间,每一个时间内仅仅可能有一个任务器做。这样建模就简单了。源点连向汇点,容量为任务须要总时间,区间连向汇点,容量为区间长度。然后每一个任务假设包括了某个区间,之间就连边容量无限大。最后推断一下最大流是否等于总任务须要时间就可以
代码:
#include <cstdio> #include <cstring> #include <queue> #include <algorithm> using namespace std; const int MAXNODE = 1005; const int MAXEDGE = 200005; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type cap, flow; Edge() {} Edge(int u, int v, Type cap, Type flow) { this->u = u; this->v = v; this->cap = cap; this->flow = flow; } }; struct Dinic { int n, m, s, t; Edge edges[MAXEDGE]; int first[MAXNODE]; int next[MAXEDGE]; bool vis[MAXNODE]; Type d[MAXNODE]; int cur[MAXNODE]; vector<int> cut; void init(int n) { this->n = n; memset(first, -1, sizeof(first)); m = 0; } void add_Edge(int u, int v, Type cap) { edges[m] = Edge(u, v, cap, 0); next[m] = first[u]; first[u] = m++; edges[m] = Edge(v, u, 0, 0); next[m] = first[v]; first[v] = m++; } bool bfs() { memset(vis, false, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int u = Q.front(); Q.pop(); for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (!vis[e.v] && e.cap > e.flow) { vis[e.v] = true; d[e.v] = d[u] + 1; Q.push(e.v); } } } return vis[t]; } Type dfs(int u, Type a) { if (u == t || a == 0) return a; Type flow = 0, f; for (int &i = cur[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) { e.flow += f; edges[i^1].flow -= f; flow += f; a -= f; if (a == 0) break; } } return flow; } Type Maxflow(int s, int t) { this->s = s; this->t = t; Type flow = 0; while (bfs()) { for (int i = 0; i < n; i++) cur[i] = first[i]; flow += dfs(s, INF); } return flow; } void MinCut() { cut.clear(); for (int i = 0; i < m; i += 2) { if (vis[edges[i].u] && !vis[edges[i].v]) cut.push_back(i); } } } gao; const int N = 405; int n, m; struct Man { int l, r; } man[N]; int p[N], pn; int s, nu, e, t; int main() { while (~scanf("%d%d", &n, &m)) { gao.init(3 * n + 2); pn = 0; int sum = 0; for (int i = 1; i <= n; i++) { scanf("%d%d%d%d", &s, &nu, &e, &t); man[i].l = s; man[i].r = e; p[pn++] = s; p[pn++] = e; sum += nu * t; gao.add_Edge(0, i, nu * t); } sort(p, p + pn); for (int i = 1; i < pn; i++) gao.add_Edge(n + i, 3 * n + 1, (p[i] - p[i - 1]) * m); for (int i = 1; i <= n; i++) { for (int j = 1; j < pn; j++) { if (p[j - 1] > man[i].r) break; if (man[i].l <= p[j - 1] && man[i].r >= p[j]) gao.add_Edge(i, j + n, INF); } } printf("%s ", gao.Maxflow(0, 3 * n + 1) == sum ? "Yes" : "No"); } return 0; }