sklearn模型的保存和加载API
- from sklearn.externals import joblib
- 保存:joblib.dump(estimator, 'test.pkl')
- 加载:estimator = joblib.load('test.pkl')
线性回归的模型保存加载案例
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, RidgeCV
from sklearn.metrics import mean_squared_error
from sklearn.externals import joblib
def dump_load_demo():
"""
模型保存和加载
:return: None
"""
# 1.获取数据
boston = load_boston()
# 2.数据基本处理
# 2.1 数据集划分
x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22, test_size=0.2)
# 3.特征工程 --标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
#
# # 4.机器学习(线性回归)
# # 4.1 模型训练
# estimator = Ridge()
#
# estimator.fit(x_train, y_train)
# print("这个模型的偏置是:
", estimator.intercept_)
#
# # 4.2 模型保存
# joblib.dump(estimator, "../../data/test.pkl")
# 4.3 模型加载
estimator = joblib.load("../../data/test.pkl")
# 5.模型评估
# 5.1 预测值和准确率
y_pre = estimator.predict(x_test)
print("预测值是:
", y_pre)
score = estimator.score(x_test, y_test)
print("准确率是:
", score)
# 5.2 均方误差
ret = mean_squared_error(y_test, y_pre)
print("均方误差是:
", ret)
if __name__ == '__main__':
dump_load_demo()