• 10.27 noip模拟试题


    1.铺瓷砖
    (tile.cpp/c/pas)
    【问题描述】
    有一面很长很长的墙。 你需要在这面墙上贴上两行瓷砖。 你的手头有两种不同尺寸的瓷
    砖,你希望用这两种瓷砖各贴一行。瓷砖的长可以用分数表示,贴在第一行的每块瓷砖长度
    为 A
    B ,贴在第二行的每块瓷砖长度为
    C
    D 。本问题中你并不需要关心瓷砖的宽度。
    如上图所示, 两排瓷砖从同一起始位置开始向右排列, 两排瓷砖的第一块的左端的缝隙
    是对齐的。你想要知道,最短铺多少距离后,两排瓷砖的缝隙会再一次对齐。
    【输入】
    输入的第 1 行包含一个正整数 T,表示测试数据的组数。
    接下来 T 行,每行 4 个正整数 A,B,C,D,表示该组测试数据中,两种瓷砖的长度分
    别为 A
    B 和
    C
    D 。
    【输出】
    输出包含 T 行, 第 i 行包含一个分数或整数, 表示第 i 组数据的答案。 如果答案为分数,
    则以“X/Y”的格式输出,不含引号。分数必须化简为最简形式。如果答案为整数,则输出
    一个整数 X。
    【输入输出样例 1】
    tile.in tile.out
    2
    1 2 1 3
    1 2 5 6
    1
    5/2
    见选手目录下的 tile/tile1.in 与 tile/tile1.out
    【输入输出样例 1 说明】
    对于第一组数据,第一行瓷砖贴 2 块,第二行贴 3 块,总长度都为 1,即在距离起始位
    置长度为 1 的位置两行瓷砖的缝隙会再次对齐。
    对于第二组数据,第一行瓷砖贴 5 块,第二行贴 3 块,总长度都为 5
    2 。
    【输入输出样例 2】
    见选手目录下的 tile/tile2.in 与 tile/tile2.out
    【数据规模与约定】
    对于 50%的数据,1≤A,B,C,D≤20
    对于 70%的数据,T≤10
    对于 100%的数据,T≤100,000,1≤A,B,C,D≤10,000

    /*简单数学题 值得一说的是 在linux下%I64d 会wa了23333 然后就wa成傻逼了*/
    #include<iostream>
    #include<cstdio>
    #define ll long long
    using namespace std;
    ll T,A,B,C,D,lcm,gcd;
    ll init(){
        ll x=0;char s=getchar();
        while(s<'0'||s>'9')s=getchar();
        while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
        return x;
    }
    ll Gcd(ll x,ll y){
        return y==0?x:Gcd(y,x%y);
    }
    ll Lcm(ll x,ll y){
        return x/Gcd(x,y)*y;
    }
    void Printf(ll x,ll y){
        if(x%y==0){
            cout<<x/y<<endl;
            return;
        }
        gcd=Gcd(x,y);
        cout<<x/gcd<<"/"<<y/gcd<<endl;
    }
    int main()
    {
        freopen("tile.in","r",stdin);
        freopen("tile.out","w",stdout);
        T=init();
        while(T--){
            A=init();B=init();C=init();D=init();
            lcm=Lcm(B,D);
            A*=lcm/B;C*=lcm/D;B=lcm;D=lcm;
            lcm=Lcm(A,C);
            Printf(lcm,B);
        }
        return 0;
    }
    View Code


    2.小 Y 的问题
    (question.cpp/c/pas)
    【问题描述】
    有个孩子叫小 Y,一天,小 Y 拿到了一个包含 n 个点和 n-1 条边的无向连通图,图中的
    点用 1~n 的整数编号。小 Y 突发奇想,想要数出图中有多少个“Y 字形”。
    一个“Y 字形”由 5 个不同的顶点 A、B、C、D、E 以及它们之间的 4 条边组成,其中 AB、
    BC、BD、DE 之间有边相连,如下图所示。
    同时,无向图中的每条边都是有一定长度的。一个“Y 字形”的长度定义为构成它的四条
    边的长度和。小 Y 也想知道,图中长度最大的“Y 字形”长度是多少。
    【输入】
    第一行包含一个整数 n,表示无向图的点数。
    接下来 n 行,每行有 3 个整数 x、y、z,表示编号为 x 和 y 的点之间有一条长度为 z 的
    边。
    【输出】
    输出包含 2 行。
    第 1 行包含一个整数,表示图中的“Y 字形”的数量。
    第 2 行包含一个整数,表示图中长度最大的“Y 字形”的长度。
    【输入输出样例 1】
    question.in question.out
    7
    1 3 2
    2 3 1
    3 5 1
    5 4 2
    4 6 3
    5 7 3
    5
    9
    见选手目录下的 question/question1.in 与 question/question1.out
    【输入输出样例 1 说明】
    图中共有 5 个“Y 字形”,如图中用红色标出的部分所示。
    其中,长度最大的“Y 字形”是编号 3、5、7、4、6 的顶点构成的那一个,长度为 9。
    【输入输出样例 2】
    见选手目录下的 question/question2.in 与 question/question2.out
    【数据规模与约定】
    对于 30%的数据,n≤10
    对于 60%的数据,n≤2,000
    对于 100%的数据,n≤200,000,1≤x,y≤n,1≤z≤10,000

    /*
    第一次做的时候傻傻的枚举Y最下面那个 慢死
    今天重新打了一下 枚举中间那条边
    然后预处理 每个点的度 以及连出去的 最大 次大 次次大
    然后搞搞就好了  
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define maxn 200010
    #define ll long long
    using namespace std;
    int n,m,mx[maxn][3],r[maxn],mxx;
    ll ans;
    struct node{
        int u,v,t;
    }e[maxn];
    int init(){
        int x=0;char s=getchar();
        while(s<'0'||s>'9')s=getchar();
        while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
        return x;
    }
    void Up(int x,int t){
        if(t>=mx[x][0]){
            mx[x][2]=mx[x][1];mx[x][1]=mx[x][0];mx[x][0]=t;
        }
        else if(t>=mx[x][1]){
            mx[x][2]=mx[x][1];mx[x][1]=t;
        }
        else if(t>=mx[x][2])mx[x][2]=t;
    }
    int main()
    {
        freopen("question.in","r",stdin);
        freopen("question.out","w",stdout);
        n=init();
        int u,v,t;
        for(int i=1;i<n;i++){
            u=init();v=init();t=init();
            e[i].u=u;e[i].v=v;e[i].t=t;
            Up(u,t);Up(v,t);r[u]++;r[v]++;
        }
        for(int i=1;i<n;i++){
            int u=e[i].u,v=e[i].v;
            int x=r[u]-1,y=r[v]-1,z;
            ans+=(ll)y*x*(x-1)/2;
            ans+=(ll)x*y*(y-1)/2;
            if(mx[u][0]==e[i].t){
                x=mx[u][1];y=mx[u][2];
            }
            else if(mx[u][1]==e[i].t){
                x=mx[u][0];y=mx[u][2];
            }
            else{
                x=mx[u][0];y=mx[u][1];
            } 
            if(mx[v][0]==e[i].t)
                z=mx[v][1];
            else z=mx[v][0];
            mxx=max(mxx,x+y+z+e[i].t);
            if(mx[v][0]==e[i].t){
                x=mx[v][1];y=mx[v][2];
            }
            else if(mx[v][1]==e[i].t){
                x=mx[v][0];y=mx[v][2];
            }
            else{
                x=mx[v][0];y=mx[v][1];
            }
            if(mx[u][0]==e[i].t)
                z=mx[u][1];
            else z=mx[u][0];
            mxx=max(mxx,x+y+z+e[i].t);
        }
        cout<<ans<<endl<<mxx<<endl;
        return 0;
    }
    View Code


    啦啦啦 拼凑的几个题

    2 sequence
    2.1 Description
    有一个长度为 n 的数列 A,每个数 A i (1 ≤ i ≤ n) 都满足 1 ≤ A i ≤ n。
    我们定义这个数列的好看程度为 j − i + 1 的最大值,其中 A i ,A i+1 ,··· ,A j 都相等。
    现在你最多能操作 T 次,每次操作是将相邻的两个数交换。问该数列好看程度最大能达到
    多少。
    2.2 Input
    第一行两个整数 n,T。
    第二行 n 个整数,其中第 i 个整数表示 A i 。
    2.3 Output
    一个整数,表示最大能达到的好看程度。
    2.4 Sample Input
    7 3
    3 2 2 4 3 2 3
    2.5 Sample Output
    3
    2.6 Sample Explanation
    一种最优方案是,先将最右边的一个 2 与它左边的 3 交换,再将这个 2 与它左边的 4
    交换,这样好看程度为 3。
    2.7 Constraints
    一共 10 个测试点,每个测试点 10 分,只有当你的答案与标准答案完全一致时才能得到
    10 分,否则为 0 分。
    对于所有测试点,1 ≤ T ≤ n 2 。
    3
    测试点编号 n 特殊限制
    1 n ≤ 10 对所有 i,A i = 1 或 A i = 2
    2 n ≤ 10 对所有 i,A i = 1 或 A i = 2
    3 n ≤ 1000 对所有 i,A i = 1 或 A i = 2
    4 n ≤ 1000 对所有 i,A i = 1 或 A i = 2
    5 n ≤ 10 5 对所有 i,A i = 1 或 A i = 2
    6 n ≤ 10 5
    7 n ≤ 10 5
    8 n ≤ 10 6 对所有 i,A i = 1 或 A i = 2
    9 n ≤ 10 6
    10 n ≤ 10 6

    /*
    暴力+骗分 40+10 下午看了一眼题解发现自己写慢了 
    有个性质就是 l-r 区间内的点移动到 中间的时候 总路径最小
    然后就剩下的一层枚举中间合并到哪
    但是吧 答案来时大一 调了一下午了 还wa这
    以后改对了再发喽 
    */
    #include<cstdio>
    #define maxn 1000010
    using namespace std;
    int n,T,a[maxn],cnt,sum,f[maxn],ans,P[maxn];
    int s1[maxn],s2[maxn],c1[maxn],c2[maxn],p1[maxn],p2[maxn];
    int g[maxn],c[maxn],e[maxn];
    int init(){
        int x=0,f=1;char s=getchar();
        while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
        while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
        return x*f;
    }
    int max(int x,int y){
        return x>y?x:y;
    }
    void Insert(){
        for(int i=1;i<=n;i++){
            P[i]=P[i-1]+i;
            if(a[i]==1){
                s1[i]=s1[i-1]+i;s2[i]=s2[i-1];
                c1[i]=c1[i-1]+1;c2[i]=c2[i-1];
            }
            else {
                s2[i]=s2[i-1]+i;s1[i]=s1[i-1];
                c2[i]=c2[i-1]+1;c1[i]=c1[i-1];
            }
        }    
        for(int i=n;i>=1;i--)
            if(a[i]==1){
                p1[i]=p1[i+1]+n-i+1;p2[i]=p2[i+1];
            }
            else {
                p2[i]=p2[i+1]+n-i+1;p1[i]=p1[i+1];
            }
    }
    int Ql(int l,int r,int k){//l-r里的k都放到1的花费 
        if(k==1)return s1[r]-s1[l-1];
        if(k==2)return s2[r]-s2[l-1];
        return g[r]-g[l-1];
    }
    int q(int l,int r,int k){//l-r里的k的个数 
        if(k==1)return c1[r]-c1[l-1];
        if(k==2)return c2[r]-c2[l-1];
        return c[r]-c[l-1];
    }
    int Qr(int l,int r,int k){//l-r里的k都都放到n的花费 
        if(k==1)return p1[l]-p1[r+1];
        if(k==2)return p2[l]-p2[r+1];
        return e[l]-e[r+1];
    }
    bool Judge(int l,int k,int r){//l-k-r这一段的a[k]都放到k这里 
        if(r>n)return 0;
        int mx=0,cnt=0,s=0;
        mx=Ql(k,r,a[k]);//右边的 
        cnt=q(k,r,a[k]);
        s+=mx-cnt*k-P[cnt-1];sum=cnt;
        mx=Qr(l,k,a[k]);//左边的 
        cnt=q(l,k,a[k]);
        s+=mx-cnt*(n-k+1)-P[cnt-1];
        sum+=cnt-1;
        return s<=T;
    }
    void Solve(){
        Insert();
        for(int s=1;s<=n;s++)
            for(int k=s+1;k<=n;k++){
                int l=0,r=n-k+1;
                while(l<=r){
                    int mid=l+r>>1;
                    if(Judge(s,k,k+mid)){
                        ans=max(ans,sum);l=mid+1;
                    }
                    else r=mid-1;
                }
            }
    }
    void Gao(){
        int mx=0,x,s,ss,t,p;
        for(int i=1;i<=n;i++){
            if(f[i]>mx){
                mx=f[i];x=i;
            }
            a[i]+=2;
        }
        x+=2;p=1;sum=0;
        while(p<=n){
            cnt=0;ss=p;
            while(a[p]==x){
                cnt++;p++;
            }
            if(cnt>sum){
                sum=cnt;s=ss;t=p-1;
            }
            p++;
        }
        for(int i=1;i<=n;i++){
            P[i]=P[i-1]+i;
            if(a[i]==x){
                g[i]=g[i-1]+i;c[i]=c[i-1]+1;
            }
            else{
                g[i]=g[i-1];c[i]=c[i-1];
            }
        }    
        for(int i=n;i>=1;i--)
            if(a[i]==x)e[i]=e[i+1]+n-i+1;
            else e[i]=e[i+1];
        for(int i=1;i<=n;i++){
            int l=0,r=n-s+1;
            while(l<=r){
                int mid=l+r>>1;
                if(Judge(i,s,s+mid)){
                    ans=max(ans,sum);l=mid+1;
                }
                else r=mid-1;
            }
        }
        for(int i=1;i<=n;i++){
            int l=0,r=n-t+1;
            while(l<=r){
                int mid=l+r>>1;
                if(Judge(i,t,t+mid)){
                    ans=max(ans,sum);l=mid+1;
                }
                else r=mid-1;
            }
        }
    }
    int main()
    {
        freopen("seq.in","r",stdin);
        freopen("seq.ans","w",stdout);
        n=init();T=init();
        for(int i=1;i<=n;i++){
            a[i]=init();
            if(f[a[i]]==0)cnt++;
            f[a[i]]++;
        }
        if(n<=1000)Solve();
        else Gao();
        printf("%d
    ",ans);
        return 0;
    }
    View Code


    3 string
    3.1 Description
    给定三个字符串 a,b,s,它们的字符集均为 小?字?,即 {a, b, ..., z}。

    F 0 = a
    F 1 = b
    F i = F i−1 + F i−2 (i > 1)
    其中 + 表示字符串的连接。
    现在有 q 个询问,每个询问给定 n,l,r,要求在由 F n 的第 l 个到第 r 个字符组成的字
    符串中,s 的出现次数。
    3.2 Input
    第一行一个字符串 a。
    第二行一个字符串 b。
    第三个一个字符串 s。
    第四行一个整数 q。
    接下来 q 行,每行三个整数 n,l,r,表示一个询问。
    3.3 Output
    对每个询问输出一行,表示该询问的答案。
    3.4 Sample Input
    a
    b
    bb
    4
    4
    4 1 5
    4 1 1
    4 2 4
    6 2 11
    3.5 Sample Output
    1
    0
    1
    2
    3.6 Sample Explanation
    • F 2 = “ba”
    • F 3 = “bab”
    • F 4 = “babba”
    • F 5 = “babbabab”
    • F 6 = “babbababbabba”
    3.7 Constraints
    一共 10 个测试点,每个测试点 10 分,只有当你的答案与标准答案完全一致时才能得到
    10 分,否则为 0 分。
    我们用 |A| 来表示字符串 A 的长度。
    测试点 a b s n q 特殊限制
    1 a = “a” b = “b” s = “ba” n ≤ 10 q ≤ 10 l = 1,r = |F n |
    2 a = “a” b = “b” |s| ≤ 10 n ≤ 10 q ≤ 10
    3 a = “a” b = “b” |s| ≤ 1000 |F n | ≤ 1000 q ≤ 1000 l = 1,r = |F n |
    4 |a| ≤ 1000 |b| ≤ 1000 |s| ≤ 1000 |F n | ≤ 1000 q ≤ 1000
    5 a = “a” b = “b” |s| ≤ 10 5 |F n | ≤ 10 5 q ≤ 10 5 l = 1,r = |F n |
    6 |a| ≤ 10 5 |b| ≤ 10 5 |s| ≤ 10 5 |F n | ≤ 10 5 q ≤ 10 5
    7 a = “a” b = “b” |s| ≤ 10 5 |F n | ≤ 10 18 q ≤ 10 5 l = 1,r = |F n |
    8 a = “a” b = “b” |s| ≤ 10 5 |F n | ≤ 10 18 q ≤ 10 5
    9 |a| ≤ 10 5 |b| ≤ 10 5 |s| ≤ 10 5 |F n | ≤ 10 18 q ≤ 10 5 l = 1,r = |F n |
    10 |a| ≤ 10 5 |b| ≤ 10 5 |s| ≤ 10 5 |F n | ≤ 10 18 q ≤ 10 5

    /*暴力字符串hash40 正解Orz 3000b+看不懂 */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define maxn 100010
    #define ll long long
    #define P 29
    using namespace std;
    int n,q,le,x[maxn],l[maxn],r[maxn],f[maxn];
    ll ha[100][maxn],Sub,p[maxn];
    string S[100],s;
    void Get(){
        p[0]=1;
        for(ll i=1;i<=100000;i++)
            p[i]=p[i-1]*P;
        le=s.length();
        for(int i=1;i<=le;i++)
            Sub=Sub*P+s[i-1];
    }
    void Hash(int x){
        if(f[x])return;f[x]=1;
        int len=S[x].length();
        for(int i=1;i<=len;i++)
            ha[x][i]=ha[x][i-1]*P+S[x][i-1];
    }
    ll Query(int x,int l,int r){
        return ha[x][r]-ha[x][l-1]*p[r-l+1];
    }
    int main()
    {
        freopen("str.in","r",stdin);
        freopen("str.ans","w",stdout);
        cin>>S[0]>>S[1]>>s>>q;
        for(int i=1;i<=q;i++){
            cin>>x[i]>>l[i]>>r[i];
            n=max(n,x[i]);
        }
        Get();
        for(int i=2;i<=n;i++)
            S[i]=S[i-1]+S[i-2];
        for(int i=1;i<=n;i++)
            Hash(i);
        for(int i=1;i<=q;i++){
            int cnt=0,len=S[x[i]].length();
            for(int j=l[i];j+le-1<=r[i];j++){
                ll mx=Query(x[i],j,j+le-1);
                if(mx==Sub)cnt++;
            }
            printf("%d
    ",cnt);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    mysql 优化20点
    java function
    设计模式 概览
    Linux安装java1.8并配置环境变量
    windows下一次执行多个sql文件
    mybatis查询结果为空时的返回值问题
    Java中Json与String互转
    SSM Service自动注入失败
    本地安装Mysql5.7过程中出现的一系列问题
    解决本地工具无法连接服务器上的mysql的问题
  • 原文地址:https://www.cnblogs.com/yanlifneg/p/6005709.html
Copyright © 2020-2023  润新知