• 安装Hadoop系列 — 新建MapReduce项目


    1、新建MR工程

    依次点击 File → New → Ohter…  选择 “Map/Reduce Project”,然后输入项目名称:mrdemo,创建新项目:
     
     
    2、(这步在以后的开发中可能会用到,但是现在不用,现在直接新建一个class文件即可)创建Mapper和Reducer
    依次点击 File → New → Ohter… 选择Mapper,自动继承Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
     
     
     
    创建Reducer的过程同Mapper,具体的业务逻辑自己实现即可。
     
    3、新建一个class文件,包名为com.mrdemo,类名为WordCount,按finish。
     
    4、编写map函数、reduce函数和主函数。本文就以官方自带的WordCount为例进行测试(将下面的源码复制到eclipse中):
    package com.mrdemo;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    public class WordCount {
      public static class TokenizerMapper
           extends Mapper<Object, Text, Text, IntWritable>{
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context
                        ) throws IOException, InterruptedException {
          StringTokenizer itr = new StringTokenizer(value.toString());
          while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
          }
        }
      }
      public static class IntSumReducer
           extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
                           ) throws IOException, InterruptedException {
          int sum = 0;
          for (IntWritable val : values) {
            sum += val.get();
          }
          result.set(sum);
          context.write(key, result);
        }
      }
      public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 2) {
          System.err.println("Usage: wordcount <in> <out>");
          System.exit(2);
        }
        //conf.set("fs.defaultFS", "hdfs://192.168.6.77:9000");
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
      }
    }
     
    5、准备测试数据。
    在hdfs中新建一个input01文件夹,然后将/home/hadoop/Documents文件夹下新建的hello文件上传到hdfs中的input01文件夹中。
    测试数据:
    hello world!
    hello hadoop
    jobtracker
    maptracker
    reducetracker
    task
    namenode
    datanode
    block
    beautiful world
    hadoop:
    HDFS
    MapReduce
     
    hadoop@hadoop-ThinkPad:~$ hadoop fs -mkdir input01
    hadoop@hadoop-ThinkPad:~$ cd /home/hadoop/Documents
    hadoop@hadoop-ThinkPad:~/Documents$ hadoop fs -copyFromLocal hello input01
    hdfs://localhost:9000/user/yyq/input01
    hdfs://localhost:9000/user/yyq/output01
     
    6、配置运行参数
    Run As → Run Configurations… ,在Arguments中配置运行参数,例如程序的输入参数:
     
    7、运行
    Run As -> Run on Hadoop ,执行完成后可以看到如下信息:
    到此Eclipse中调用Hadoop-1.0.3本地伪分布式模式执行MR演示成功。
    参考博客:
    http://www.aboutyun.com/forum.php?mod=viewthread&tid=7541&
     
  • 相关阅读:
    [转]怎么看工作是否到位
    [转]一个合格程序员该做的事情——你做好了吗?
    深入图解虚拟机(一)--一个问题引出的思考
    正则表达式边用边学(一)——分组、捕获
    redhat无法注册RHN的解决办法
    使用jquery扩展表格行合并方法探究
    扩展jquery easyui datagrid编辑单元格
    js点滴知识(1) -- 获取DOM对象和编码
    使用雅虎YUI Compressor压缩JS过程心得记录
    插曲一--记《数据结构与问题求解(Java语言版)(第4版)》翻译问题
  • 原文地址:https://www.cnblogs.com/yangyquin/p/5021122.html
Copyright © 2020-2023  润新知