• 二叉树的基本操作


    二叉树的基本操作主要是输入的时候,对于一个叶子节点,它同样也是根节点,所以我们要输入两个空字符,代码中是以#代替的。

    还有就是广义表建立二叉树的时候,我们要让每次循环的P指针先指向处理后的根节点,然后进而让根节点入栈,此时用栈模拟先序建立,因为入栈出栈的过程就像dfs。

    #include <iostream>
    #include <cstdio>
    #include <stdlib.h>
    #include <stack>
    using namespace std;
    
    typedef char ElementType;
    
    typedef struct BiTreeNode {
    	ElementType data;
    	struct BiTreeNode *Lchild;
    	struct BiTreeNode *Rchild;
    }BiTreeNode,*BiTree;
    
    BiTreeNode Tree;//创建根节点 
    
    //先序建立二叉树 
    void CreateBiTree(BiTree &T)
    {
    	char data;
    	data=getchar();
    	if (data=='#') {
    		T=NULL;
    		return ;
    	}
    	else {
    		T=new BiTreeNode;
    		T->data=data;
    		CreateBiTree(T->Lchild);
    		CreateBiTree(T->Rchild); 
    	}
    }
    
    void GenListCreateBiTree(BiTree &T)
    {
    	stack<BiTree> Stack;
    	BiTree P=NULL;
    	int k=0;
    	char ch=getchar();
    
    	//根的处理 
    	if (ch!='#') {
    		T->data=ch;
    		T->Lchild=NULL;
    		T->Rchild=NULL;
    		P=T;
    	}
    	
    	while ((ch=getchar())!='#') {
    		switch (ch) {
    			case '(':
    				Stack.push(P);//首先让根入栈 
    				k=1;
    				break;
    			case ',':
    				k=2;
    				break;
    			case ')':
    				Stack.pop();
    				break;
    			default:
    				P=new BiTreeNode;
    				P->data=ch;
    				P->Lchild=NULL;
    				P->Rchild=NULL;
    				if (k==1) {
    					Stack.top()->Lchild=P;
    				}
    				else {
    					Stack.top()->Rchild=P;
    				}
    		}
    	}
    }
    
    void GenListPrintTree(BiTree &T)
    {
    	if(T) {
    		cout<<T->data;
    		if (T->Lchild||T->Rchild) {
    			cout<<"(";
    			GenListPrintTree(T->Lchild);
    			cout<<",";
    			if (T->Rchild) {
    				GenListPrintTree(T->Rchild);
    			}
    			cout<<")";		
    		}
    		
    	}
    }
    
    void PreOrderTraverse(BiTree T)
    {
    	if (T) {
    		cout<<T->data<<" ";
    		PreOrderTraverse(T->Lchild);
    		PreOrderTraverse(T->Rchild);
    	}
    }
    
    void InOrderTraverse(BiTree T)
    {
    	if (T) {
    		InOrderTraverse(T->Lchild);
    		cout<<T->data<<" ";
    		InOrderTraverse(T->Rchild);
    	}	
    }
    
    void PostOrderTraverse(BiTree T)
    {
    	if (T) {
    		PostOrderTraverse(T->Lchild);
    		PostOrderTraverse(T->Rchild);
    		cout<<T->data<<" ";
    	}
    }
    
    int BiTreeDepth(BiTree &T)
    {
    	if (T==NULL)
    		return 0;
    	if (T) {
    		int depthL=BiTreeDepth(T->Lchild);
    		int depthR=BiTreeDepth(T->Rchild);
    		return (depthL>depthR)?(depthL+1):(depthR+1);
    	}
    }
    
    int TwoDegreeCountBiTree(BiTree &T)
    {
    	if (T==NULL) {
    		return 0;
    	}
    	int cnt=0;
    	if (T->Lchild&&T->Rchild) {
    		cnt++;
    	}
    	return cnt+TwoDegreeCountBiTree(T->Lchild)+TwoDegreeCountBiTree(T->Rchild); 
    }
    
    void DestroyBiTree(BiTree &T)
    {
    	if (T) {
    		DestroyBiTree(T->Lchild);
    		DestroyBiTree(T->Rchild);
    		delete T;
    		T=NULL;
    	}
    }
    
    int main()
    {
    	BiTree address=&Tree;
    	cout<<"先序创建一棵二叉树(#为空):"<<endl; 
    	CreateBiTree(address);
    	//GenListCreateBiTree(address); a(b(c,d),)#
    	
    	cout<<"先序遍历:"<<endl; 
    	PreOrderTraverse(address);
    	cout<<endl;
    	
    	cout<<"中序遍历:"<<endl;
    	InOrderTraverse(address);
    	cout<<endl;
    	
    	cout<<"后序遍历:"<<endl;
    	PostOrderTraverse(address);
    	cout<<endl;
    	
    	cout<<"广义表先序输出二叉树:"<<endl; 
    	GenListPrintTree(address);
    	cout<<endl;
    	
    	cout<<"二叉树的深度为:"<<BiTreeDepth(address)<<endl;
    	
    	cout<<"二叉树的二度节点个数为:"<<TwoDegreeCountBiTree(address)<<endl; 
    	cout<<"二叉树的叶子节点个数为:"<<1+TwoDegreeCountBiTree(address)<<endl; 
    	
    	cout<<"二叉树已销毁"<<endl;
    	return 0;
    }
    /*
    Bitree 
    -+a##*b##-c##d##/e##f##
    */
  • 相关阅读:
    [UWP]如何使用Fluent Design System (下)
    [UWP]如何使用Fluent Design System (上)
    [UWP]了解IValueConverter
    [UWP]了解TypeConverter
    [UWP]本地化入门
    [WPF]本地化入门
    [UWP]创建一个进度按钮
    [UWP]分享一个基于HSV色轮的调色板应用
    [UWP]使用Writeable​Bitmap创建HSV色轮
    [UWP]理解及扩展Expander
  • 原文地址:https://www.cnblogs.com/xyqxyq/p/10211339.html
Copyright © 2020-2023  润新知