• Leetcode--221--Maximal Square


    方法一:

    对于方阵中的每个点来说,先看纵向最多有多少个连续的1(例如:k个),然后从k到2开始枚举正方形的边长(设为j),每次判断能否形成一个正方形的时候去判断这j行是否每行都有连续j个1 。

    具体做法:

    1. 对于每个点统计以这个点为起点,横向有多少个1,纵向有多少个1,并得到分别得到两个矩阵。

    2. 按照之前的普通思路进行判断

     1 import math
     2 def get_1_0_matrix(mat):
     3     new_mat_row = []
     4     new_mat_col = []
     5     new_mat_all_col = []
     6     rows = len(mat)
     7     cols = len(mat[0])
     8     #get the rows of 1
     9     for i in range(rows):
    10         new_mat_row.append([])
    11         new_mat_col.append([])
    12         new_mat_all_col.append([])
    13         cnt_step = 0
    14         for j in range(cols):
    15             if cnt_step>0:
    16                 cnt_step -= 1
    17             else:
    18                 if mat[i][j]=='1':
    19                     cnt_1 = 1
    20                     for k in range(j+1,cols):
    21                         if mat[i][k]=='1':
    22                             cnt_1 += 1
    23                             cnt_step += 1
    24                         else:
    25                             break
    26                     for k in range(j,j+cnt_1):
    27                         #new_mat_row[i][k] = chr(cnt_1)
    28                         #new_mat_row[i] += str(cnt_1)
    29                         new_mat_row[i].append(cnt_1)
    30                         cnt_1 -= 1
    31                 else:
    32                     #new_mat_row[i] += "0"
    33                     new_mat_row[i].append(0)
    34     #get the cols of 1
    35     for i in range(cols):
    36         cnt_step = 0
    37         for j in range(rows):
    38             if cnt_step>0:
    39                 cnt_step -= 1
    40             else:
    41                 if mat[j][i]=='1':
    42                     cnt_1 = 1
    43                     for k in range(j+1,rows):
    44                         if mat[k][i]=='1':
    45                             cnt_1 += 1
    46                             cnt_step += 1
    47                         else:
    48                             break
    49                     #print "cnt1:",cnt_1
    50                     cnt_1_bk = cnt_1
    51                     for k in range(j,j+cnt_1):
    52                         #new_mat_col[k] += str(cnt_1)
    53                         new_mat_col[k].append(cnt_1)
    54                         new_mat_all_col[k].append(cnt_1_bk)
    55                         #print "k:",k
    56                         cnt_1 -= 1
    57                     #print new_mat_col
    58                 else:
    59                     #new_mat_col[j] += "0"
    60                     new_mat_col[j].append(0)
    61                     new_mat_all_col[j].append(0)
    62     return new_mat_row, new_mat_col, new_mat_all_col
    63 class Solution(object):
    64     def maximalSquare(self, matrix):
    65         """
    66         :type matrix: List[List[str]]
    67         :rtype: int
    68         """
    69         if len(matrix)==0:
    70             return 0
    71         mat_row, mat_col, mat_all_col = get_1_0_matrix(matrix)
    72         #print mat_row
    73         #print mat_col
    74         ans = 0
    75         #print "rows =",len(mat), "cols =",len(mat[0])
    76         for i in range(len(matrix)):
    77             for j in range(len(matrix[i])):
    78                 for length in range(mat_col[i][j],int(math.sqrt(ans)),-1):
    79                     flag = -1
    80                     for k in range(i,i+length):
    81                         if mat_row[k][j]<length:
    82                             flag = 1
    83                             break
    84                     if flag == -1:
    85                         ans = max(ans, length**2)
    86                         break
    87         return ans
    88 
    89 if __name__ == "__main__":
    90     mat = ["1111111111111101001111111100111011111111","1111011011111111101101111101111111111111","0111101011111101101101101111111111111111","0101101011111111111101111111010110111111","1111111111110111110110010111111111111111","1111111110110101111111111101011111101111","0110110101110011111111111111110111110101","0111111111111100111111100110011011010101","1111011110111111111011011011110101101011","1111111110111111111101101101110111101111","1110110011111111111100111111111111111111","1011111110111101111001110111111111111111","0110111111111111101111110111011111011111","1111111111111111011111111111110111111011","1111100111111110101100111111111111101111","1111101111111110111111011111111111011111","1111101111111111111111011001111110011111","1111110111111111011111111111110111110111","1011111111111111010111110010111110111111","1111110011111111111110111111111111111011","1111111111111111110111011111011111011011","1100011011111111111111011111011111111111","1111101011111111111101100101110011111111","1110010111111111111011011110111101111101","1111111111111101101111111111101111111111","1111111011111101111011111111111110111111","1110011111111110111011111111110111110111","1111111111111100111111010111111111110111","1111111111111111111111000111111111011101","1111110111111111111111111101100111011011","1111011011111101101101111110111111101111","1111111111011111111111111111111111111111","1111111111111111111111111111111111111111","1100011111111110111111111111101111111011","1111101111111101111010111111111111111111","0111111111110011111111110101011011111111","1011011111101111111111101111111111110011","1010111111111111111111111111111110011111","0111101111011111111111111111110111111111","0111111011111111011101111011101111111111","0111111111110101111011111101011001111011","1111111111111011110111111101111111101110","1111101111111100111111111110111111001111","1101101111110101111101111111100111010100","0110111111100111110010111110111011011101"]
    91     #mat = ["111","111","101"]
    92     #mat = ["11110000","01111111","11111111","01111111","01111111","11111110","01111100","11111000"]
    93     #new_mat_row, new_mat_col = get_1_0_matrix(mat)
    94     #print new_mat_row
    95     #print new_mat_col
    96     s = Solution()
    97     print s.maximalSquare(mat)
    View Code

    方法二:

    dp[ i ][ j ]:表示以i ,j为右下角的正方形的边长

    所以dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1

     a   b 
     c   d

    如上图中,abcd分别表示各个正方形的右下角,且边长分别为abcd。开始分类讨论abc的大小:

    if a>=b>=c:

    所以d=c+1, 因为a+1>=c+1(即d) & b+1>=c+1(即d),所以自然的构成了新的正方形

    if b>=c>=a 和 if c>=b>=a 同理可证

     1 class Solution(object):
     2     def maximalSquare(self, matrix):
     3         """
     4         :type matrix: List[List[str]]
     5         :rtype: int
     6         """
     7         ans = 0
     8         res = []
     9         for i in range(0,len(matrix)):
    10             #print "i:",i
    11             res.append([])
    12             for j in range(0,len(matrix[0])):
    13                 #print "j:",j
    14                 res[i].append(0)
    15         for i in range(0,len(matrix)):
    16             for j in range(0,len(matrix[0])):
    17                 if i ==0 or j==0:
    18                     if matrix[i][j]=='0':
    19                         res[i][j] = 0
    20                     else:
    21                         res[i][j] = 1
    22                 elif matrix[i][j]=='0':
    23                     res[i][j] = 0
    24                 else:
    25                     res[i][j] = 1+min(res[i][j-1],min(res[i-1][j-1],res[i-1][j]))
    26                 ans = max(ans,res[i][j])
    27         return ans**2
    View Code
  • 相关阅读:
    我再说一遍-微软官方文档查询技巧分享
    你听我说-HandyControl多语言包处理
    太阳当空照-Windows服务化方式脚本封装sc指令
    你听我说-HandyControl源码编译
    太阳当空照-知识分享
    Mac多屏dock切换
    [转]浅析线性表(链表)的头插法和尾插法的区别及优缺点
    点击按钮,在textarea光标位置插入值
    优秀学习笔记汇总>o<
    解决excel文件上传时更改选中的文件出现错误net::ERR_UPLOAD_FILE_CHANGED
  • 原文地址:https://www.cnblogs.com/xxx0624/p/5114684.html
Copyright © 2020-2023  润新知