1088 - Points in Segments
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Given n points (1 dimensional) and q segments, you have to find the number of points that lie in each of the segments. A point pi will lie in a segment A B if A ≤ pi ≤ B.
For example if the points are 1, 4, 6, 8, 10. And the segment is 0 to 5. Then there are 2 points that lie in the segment.
Input
Input starts with an integer T (≤ 5), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 105) and q (1 ≤ q ≤ 50000). The next line contains n space separated integers denoting the points in ascending order. All the integers are distinct and each of them range in [0, 108].
Each of the next q lines contains two integers Ak Bk (0 ≤ Ak ≤ Bk ≤ 108) denoting a segment.
Output
For each case, print the case number in a single line. Then for each segment, print the number of points that lie in that segment.
Sample Input |
Output for Sample Input |
1 5 3 1 4 6 8 10 0 5 6 10 7 100000 |
Case 1: 2 3 2 |
Note
Dataset is huge, use faster I/O methods.
题目大意:数据量非常大,直接搞肯定就搞死了,明显二分查找,调用lower__bound和upper__bound就可以。
输出注意要用标准输入输出,否则超时gg.
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#define mem(a) memset(a,0,sizeof(a))
using namespace std;
const int maxn=100000+100;
int a[maxn];
int main()
{
int kase=0;
int T;
int n,p;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&p);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
printf("Case %d:
",++kase);
while(p--)
{
int c,d;
scanf("%d%d",&c,&d);
int t1=upper_bound(a,a+n,d)-a;
int t2=lower_bound(a,a+n,c)-a;
printf("%d
",t1-t2);
}
}
return 0;
}