根据
https://github.com/tensorflow/tensorflow/issues/1824
简单进行了测试
修改运行的脚本增加如下关键代码
例如mnist_softmax.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function # Import data from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.client import timeline import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string( 'data_dir' , '/tmp/data/' , 'Directory for storing data' ) mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot = True ) # Create the model x = tf.placeholder(tf.float32, [ None , 784 ]) W = tf.Variable(tf.zeros([ 784 , 10 ])) b = tf.Variable(tf.zeros([ 10 ])) y = tf.nn.softmax(tf.matmul(x, W) + b) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [ None , 10 ]) cross_entropy = tf.reduce_mean( - tf.reduce_sum(y_ * tf.log(y), reduction_indices = [ 1 ])) train_step = tf.train.GradientDescentOptimizer( 0.5 ).minimize(cross_entropy) # Train intiOp = tf.initialize_all_variables() # Init run_metadata run_metadata = tf.RunMetadata() # Open file to save trace trace_file = open ( '/tmp/timeline.ctf.json' , 'w' ) sess = tf.Session() sess.run(intiOp) for i in range ( 500 ): batch_xs, batch_ys = mnist.train.next_batch( 100 ) sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys}, options = tf.RunOptions(trace_level = tf.RunOptions.FULL_TRACE), run_metadata = run_metadata) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1 ), tf.argmax(y_, 1 )) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print (sess.run(accuracy, feed_dict = {x: mnist.test.images, y_: mnist.test.labels})) #timeline trace = timeline.Timeline(step_stats = run_metadata.step_stats) trace_file.write(trace.generate_chrome_trace_format()) |
打开chrome浏览器输入
选择Load按钮加载输出的json文件
W,S按键可以缩放,A,D按键可以移动,具体帮助点击右上角“?”按钮