26. 删除排序数组中的重复项
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。
示例 1:
给定数组 nums = [1,1,2],
函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。
你不需要考虑数组中超出新长度后面的元素。
示例 2:
给定 nums = [0,0,1,1,1,2,2,3,3,4],
函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/remove-duplicates-from-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution:
def remove_duplicates(self, nums):
if not nums:
return 0
count = 0
for i in range(len(nums)):
if nums[count] != nums[i]:
count += 1
nums[count] = nums[i]
return count+1
27.移出元素
给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1:
给定 nums = [3,2,2,3], val = 3,
函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。
你不需要考虑数组中超出新长度后面的元素。
示例 2:
给定 nums = [0,1,2,2,3,0,4,2], val = 2,
函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
注意这五个元素可为任意顺序。
你不需要考虑数组中超出新长度后面的元素。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/remove-element
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution:
def removeElement(self, nums: List[int], val: int) -> int:
for i in range(len(nums)-1, -1, -1):
if nums[i] == val:
nums.pop(i)
return len(nums)
实现 strStr() 函数。
给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。
示例 1:
输入: haystack = "hello", needle = "ll"
输出: 2
示例 2:
输入: haystack = "aaaaa", needle = "bba"
输出: -1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/implement-strstr
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution:
def strStr(self, haystack: str, needle: str) -> int:
for i in range(len(haystack) - len(needle) + 1):
if haystack[i: i + len(needle)] == needle:
return i
return -1
22.全排列
给定一个没有重复数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/permutations
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution:
def permute(self, nums):
if len(nums) <= 1:
return[nums]
answer = []
for i, num in enumerate(nums):
n = nums[:i] + nums[i+1:]
for y in self.permute(n):
answer.append([num] + y)
return answer
如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:
n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
873. 最长的斐波那契子序列的长度
示例 1:
输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。
示例 2:
输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/length-of-longest-fibonacci-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution:
def lenLongestFibSubseq(self, A):
s = set(A)
n = len(A)
result = 0
for i in range(n-1):
for j in range(i+1, n):
a, b = A[i], A[j]
count = 2
while a+b in s:
a, b = b, a+b
count += 1
result = max(result, count)
return result if result > 2 else 0