• 完全偶图K(3,3)与完全图K5是否存在平面表示


    本文论述k(3, 3)与K5平面表示的存在性。首先给出图的平面表示的定义:

      若可以在平面里画出一个图而让边没有任何交叉(边的交叉是指边的直线或弧线在它们的公共端点以外的地方相交),则这个图是平面性的。这样一种画法称为这个图的平面表示。

    显然,证明一个图是非平面性比证明一个图是平面性的要困难。因为对于后者我们可以用构造性的存在性证明来说明一个图是平面性的。

    首先考虑K(3, 3)是否是平面性的。为了解决这个问题,我们首先可能认为其存在平面表示,于是乎我们开始尝试各种可能,企图利用构造性的存在性证明来找到一个合法的解。不幸的是在尝试了许多可能后,我们仍然没有找到一个合法解。自然的,我们在心里开始否认先前的看法,转而认为其不可能有平面表示。但是,这只是一种合情的猜想,站在G·波利亚的角度我们可能会说,数学的发现离不开猜想,然而猜想也仅仅是猜想而已,未经证明的猜想是不可靠的,对于猜想的态度应该是要么证明它,要么推翻它,对于既不能推翻也不能证明的猜想就有可能成为世界性难题,比如著名的哥德巴赫猜想和经由计算机证明的四色定理。扯远了,思想性的东西还是直接看波利亚的书吧。回到我们的主题,下面我们将证明K(3, 3) 是非平面性的。

    考虑两个集合,每个集合有三个元素(顶点),在两个集合中各取出两个元素,作出在完全偶图概念下的平面表示。这显然是容易做到的,它很明显是一个四边形,且属于同一个集合的顶点在四边形的对角线上(这里广义化了,因为四边形可能是不规则的)。考虑到还有两个元素没有添加进来,我们不失一般性的任取其中之一,其摆放位置很明显有两种,要么在四边形区域内要么在四边形区域外,如果在区域内,将其和另一个集合的两个顶点相连,这样把平面划分成了三个区域,注意到剩下的那个顶点在这种情况下放到哪个区域中都不可能不发生交叉。在区域外的情况同理。至此我们证明了K(3, 3)是非平面性的。

    利用相似的思想,我们可以证明完全图K5 也是非平面性的(hits: 可以先放置四个顶点,它的形式必然如下图,考虑第五个顶点,它无论放到哪里都不可能不产生交叉;或者我们可以先放置三个顶点,它构成了一个三角形,然后考虑另外两个顶点的放置方法)。

  • 相关阅读:
    页面性能:如何系统地优化页面?
    为什么CSS动画比JavaScript高效?
    Code Review
    浏览器中的页面之CSS是如何影响到渲染流程的
    async / await
    手撸Promise
    Promise
    宏任务和微任务
    有点恶心,随手写点儿
    关于判断用户输入的是不是int类型,这次没有正则表达式
  • 原文地址:https://www.cnblogs.com/xpjiang/p/4466562.html
Copyright © 2020-2023  润新知