• pytorch实现的transformer代码分析


    代码来源:https://github.com/graykode/nlp-tutorial/blob/master/5-1.Transformer/Transformer-Torch.py

    一些基础变量和参数:

    import numpy as np
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.autograd import Variable
    import matplotlib.pyplot as plt
    
    dtype = torch.FloatTensor
    # S: Symbol that shows starting of decoding input
    # E: Symbol that shows starting of decoding output
    # P: Symbol that will fill in blank sequence if current batch data size is short than time steps
    sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']
    
    # Transformer Parameters
    # Padding Should be Zero
    src_vocab = {'P' : 0, 'ich' : 1, 'mochte' : 2, 'ein' : 3, 'bier' : 4}
    src_vocab_size = len(src_vocab)
    
    tgt_vocab = {'P' : 0, 'i' : 1, 'want' : 2, 'a' : 3, 'beer' : 4, 'S' : 5, 'E' : 6}
    number_dict = {i: w for i, w in enumerate(tgt_vocab)}
    tgt_vocab_size = len(tgt_vocab)
    
    src_len = 5
    tgt_len = 5
    
    d_model = 512  # Embedding Size
    d_ff = 2048 # FeedForward dimension
    d_k = d_v = 64  # dimension of K(=Q), V
    n_layers = 6  # number of Encoder of Decoder Layer
    n_heads = 8  # number of heads in Multi-Head Attention

    函数一:将句子转换成向量

    def make_batch(sentences):
        input_batch = [[src_vocab[n] for n in sentences[0].split()]]
        output_batch = [[tgt_vocab[n] for n in sentences[1].split()]]
        target_batch = [[tgt_vocab[n] for n in sentences[2].split()]]
        return Variable(torch.LongTensor(input_batch)), Variable(torch.LongTensor(output_batch)), Variable(torch.LongTensor(target_batch))
    input_batch,output_batch,target_batch=make_batch(sentences)
    input_batch,output_batch,target_batch
    输出:
    (tensor([[1, 2, 3, 4, 0]]),
     tensor([[5, 1, 2, 3, 4]]),
     tensor([[1, 2, 3, 4, 6]]))

    函数二:位置嵌入

    def get_sinusoid_encoding_table(n_position, d_model):
        def cal_angle(position, hid_idx):
            return position / np.power(10000, 2 * (hid_idx // 2) / d_model)
        def get_posi_angle_vec(position):
            return [cal_angle(position, hid_j) for hid_j in range(d_model)]
    
        sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
        return torch.FloatTensor(sinusoid_table)
    sinusoid_table=get_sinusoid_encoding_table(src_len+1,d_model)
    sinusoid_table.shape
    torch.Size([6, 512])

    sinusoid_table

    tensor([[ 0.0000e+00,  1.0000e+00,  0.0000e+00,  ...,  1.0000e+00,
              0.0000e+00,  1.0000e+00],
            [ 8.4147e-01,  5.4030e-01,  8.2186e-01,  ...,  1.0000e+00,
              1.0366e-04,  1.0000e+00],
            [ 9.0930e-01, -4.1615e-01,  9.3641e-01,  ...,  1.0000e+00,
              2.0733e-04,  1.0000e+00],
            [ 1.4112e-01, -9.8999e-01,  2.4509e-01,  ...,  1.0000e+00,
              3.1099e-04,  1.0000e+00],
            [-7.5680e-01, -6.5364e-01, -6.5717e-01,  ...,  1.0000e+00,
              4.1465e-04,  1.0000e+00],
            [-9.5892e-01,  2.8366e-01, -9.9385e-01,  ...,  1.0000e+00,
              5.1832e-04,  1.0000e+00]])

    函数三:mask机制

    def get_attn_pad_mask(seq_q, seq_k):
        batch_size, len_q = seq_q.size()
        batch_size, len_k = seq_k.size()
        # eq(zero) is PAD token
        pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k(=len_q), one is masking
        return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k

    函数四:

    def get_attn_subsequent_mask(seq):
        attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
        subsequent_mask = np.triu(np.ones(attn_shape), k=1)
        subsequent_mask = torch.from_numpy(subsequent_mask).byte()
        return subsequent_mask

    不同的层:

    class ScaledDotProductAttention(nn.Module):
        def __init__(self):
            super(ScaledDotProductAttention, self).__init__()
    
        def forward(self, Q, K, V, attn_mask):
            scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
            scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
            attn = nn.Softmax(dim=-1)(scores)
            context = torch.matmul(attn, V)
            return context, attn
    
    class MultiHeadAttention(nn.Module):
        def __init__(self):
            super(MultiHeadAttention, self).__init__()
            self.W_Q = nn.Linear(d_model, d_k * n_heads)
            self.W_K = nn.Linear(d_model, d_k * n_heads)
            self.W_V = nn.Linear(d_model, d_v * n_heads)
        def forward(self, Q, K, V, attn_mask):
            # q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
            residual, batch_size = Q, Q.size(0)
            # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
            q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size x n_heads x len_q x d_k]
            k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size x n_heads x len_k x d_k]
            v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size x n_heads x len_k x d_v]
    
            attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
    
            # context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
            context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
            context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
            output = nn.Linear(n_heads * d_v, d_model)(context)
            return nn.LayerNorm(d_model)(output + residual), attn # output: [batch_size x len_q x d_model]
    
    class PoswiseFeedForwardNet(nn.Module):
        def __init__(self):
            super(PoswiseFeedForwardNet, self).__init__()
            self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
            self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
    
        def forward(self, inputs):
            residual = inputs # inputs : [batch_size, len_q, d_model]
            output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
            output = self.conv2(output).transpose(1, 2)
            return nn.LayerNorm(d_model)(output + residual)
    
    class EncoderLayer(nn.Module):
        def __init__(self):
            super(EncoderLayer, self).__init__()
            self.enc_self_attn = MultiHeadAttention()
            self.pos_ffn = PoswiseFeedForwardNet()
    
        def forward(self, enc_inputs, enc_self_attn_mask):
            enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
            enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
            return enc_outputs, attn
    
    class DecoderLayer(nn.Module):
        def __init__(self):
            super(DecoderLayer, self).__init__()
            self.dec_self_attn = MultiHeadAttention()
            self.dec_enc_attn = MultiHeadAttention()
            self.pos_ffn = PoswiseFeedForwardNet()
    
        def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
            dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
            dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
            dec_outputs = self.pos_ffn(dec_outputs)
            return dec_outputs, dec_self_attn, dec_enc_attn
    
    class Encoder(nn.Module):
        def __init__(self):
            super(Encoder, self).__init__()
            self.src_emb = nn.Embedding(src_vocab_size, d_model)
            self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)
            self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
    
        def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
            enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,0]]))
            enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
            enc_self_attns = []
            for layer in self.layers:
                enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
                enc_self_attns.append(enc_self_attn)
            return enc_outputs, enc_self_attns
    
    class Decoder(nn.Module):
        def __init__(self):
            super(Decoder, self).__init__()
            self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
            self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_len+1, d_model),freeze=True)
            self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
    
        def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
            dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(torch.LongTensor([[5,1,2,3,4]]))
            dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)
            dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
            dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
    
            dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
    
            dec_self_attns, dec_enc_attns = [], []
            for layer in self.layers:
                dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
                dec_self_attns.append(dec_self_attn)
                dec_enc_attns.append(dec_enc_attn)
            return dec_outputs, dec_self_attns, dec_enc_attns
    
    class Transformer(nn.Module):
        def __init__(self):
            super(Transformer, self).__init__()
            self.encoder = Encoder()
            self.decoder = Decoder()
            self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
        def forward(self, enc_inputs, dec_inputs):
            enc_outputs, enc_self_attns = self.encoder(enc_inputs)
            dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
            dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
            return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

    从Transformer类中慢慢看过来:

    model = Transformer()

    初始化的时候:构建编码器、解码器、前馈神经网络。

    在前向传播的过程中:

    编码器输入(源语言)--》编码器输出、编码器自注意力

    解码器输入(目标语言、源语言、编码器输出)--》解码器输出、解码器自注意力、解码-编码注意力

    前馈神经网络输入(解码器输出)--》dec_logits

    分别打印一下每个变量的形状:

    model=Transformer()
    enc_inputs, dec_inputs, target_batch = make_batch(sentences)
    outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
    enc_inputs的形状是: torch.Size([1, 5])
    enc_inputs的形状是: torch.Size([1, 5])
    enc_outputs的形状是: torch.Size([1, 5, 512])
    enc_self_attns的形状是: (6,)
    dec_outputs的形状是: torch.Size([1, 5, 512])
    dec_self_attns的形状是: (6,)
    dec_enc_attns的形状是: (6,)

    其中的细节再看了。

    最后是训练和预测:

    model = Transformer()
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    def showgraph(attn):
        attn = attn[-1].squeeze(0)[0]
        attn = attn.squeeze(0).data.numpy()
        fig = plt.figure(figsize=(n_heads, n_heads)) # [n_heads, n_heads]
        ax = fig.add_subplot(1, 1, 1)
        ax.matshow(attn, cmap='viridis')
        ax.set_xticklabels(['']+sentences[0].split(), fontdict={'fontsize': 14}, rotation=90)
        ax.set_yticklabels(['']+sentences[2].split(), fontdict={'fontsize': 14})
        plt.show()
    
    for epoch in range(20):
        optimizer.zero_grad()
        enc_inputs, dec_inputs, target_batch = make_batch(sentences)
        outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
        loss = criterion(outputs, target_batch.contiguous().view(-1))
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
        loss.backward()
        optimizer.step()
    
    # Test
    predict, _, _, _ = model(enc_inputs, dec_inputs)
    predict = predict.data.max(1, keepdim=True)[1]
    print(sentences[0], '->', [number_dict[n.item()] for n in predict.squeeze()])
    
    print('first head of last state enc_self_attns')
    showgraph(enc_self_attns)
    
    print('first head of last state dec_self_attns')
    showgraph(dec_self_attns)
    
    print('first head of last state dec_enc_attns')
    showgraph(dec_enc_attns)

    结果:

    Epoch: 0001 cost = 2.058749
    Epoch: 0002 cost = 0.096908
    Epoch: 0003 cost = 0.034705
    Epoch: 0004 cost = 0.045140
    Epoch: 0005 cost = 0.005356
    Epoch: 0006 cost = 0.000624
    Epoch: 0007 cost = 0.004379
    Epoch: 0008 cost = 0.001091
    Epoch: 0009 cost = 0.000852
    Epoch: 0010 cost = 0.002038
    Epoch: 0011 cost = 0.000404
    Epoch: 0012 cost = 0.000122
    Epoch: 0013 cost = 0.000275
    Epoch: 0014 cost = 0.000174
    Epoch: 0015 cost = 0.000479
    Epoch: 0016 cost = 0.003401
    Epoch: 0017 cost = 0.000108
    Epoch: 0018 cost = 0.000068
    Epoch: 0019 cost = 0.000033
    Epoch: 0020 cost = 0.000050
    ich mochte ein bier P -> ['i', 'want', 'a', 'beer', 'E']
    first head of last state enc_self_attns
    
    first head of last state dec_self_attns
    
    first head of last state dec_enc_attns
    
  • 相关阅读:
    CentOS7突然出现无法连接网络的情况--VM下
    设置Linux系统的LANG变量
    习题
    Linux目录路径知识
    Linux目录详细介绍
    regexp正则
    https://github.com/rwson/awesome-javascript-cn
    JavaScript资源大全中文版(Awesome最新版)
    关于 Chrome DevTools 的 25 个实用技巧
    从前端菜鸟到大神,看这一篇就够了
  • 原文地址:https://www.cnblogs.com/xiximayou/p/13345878.html
Copyright © 2020-2023  润新知