• 【colab pytorch】使用tensorboard可视化


    import datetime
    
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torch.utils.data import Dataset, DataLoader
    from torchvision import transforms, utils, datasets
    
    from tensorflow import summary
    %load_ext tensorboard

    根据情况换成

    %load_ext tensorboard.notebook

    class Network(nn.Module):
      def __init__(self):
        super(Network, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)
       
      def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
        
    class Config:  
      def __init__(self, **kwargs):
        for key, value in kwargs.items():
          setattr(self, key, value)
    
    
    model_config = Config(
        cuda = True if torch.cuda.is_available() else False,
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
        seed = 2,
        lr = 0.01,
        epochs = 4,
        save_model = False,
        batch_size = 32,
        log_interval = 100
    )
        
    class Trainer:
      
      def __init__(self, config):
        
        self.cuda = config.cuda
        self.device = config.device
        self.seed = config.seed
        self.lr = config.lr
        self.epochs = config.epochs
        self.save_model = config.save_model
        self.batch_size = config.batch_size
        self.log_interval = config.log_interval
        
        self.globaliter = 0
        #self.tb = TensorBoardColab()
        
        torch.manual_seed(self.seed)
        kwargs = {'num_workers': 1, 'pin_memory': True} if self.cuda else {}
    
        self.train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=True, download=True,
                         transform=transforms.Compose([
                             transforms.ToTensor(),
                             transforms.Normalize((0.1307,), (0.3081,))
                         ])),
            batch_size=self.batch_size, shuffle=True, **kwargs)
    
        self.test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=False, transform=transforms.Compose([
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.1307,), (0.3081,))
                             ])),
            batch_size=self.batch_size, shuffle=True, **kwargs)
    
    
        self.model = Network().to(self.device)
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
       
      
      def train(self, epoch):
      
        self.model.train()
        for batch_idx, (data, target) in enumerate(self.train_loader):
          
          self.globaliter += 1
          data, target = data.to(self.device), target.to(self.device)
    
          self.optimizer.zero_grad()
          predictions = self.model(data)
    
          loss = F.nll_loss(predictions, target)
          loss.backward()
          self.optimizer.step()
    
          if batch_idx % self.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                      epoch, batch_idx * len(data), len(self.train_loader.dataset),
                      100. * batch_idx / len(self.train_loader), loss.item()))
           
            with train_summary_writer.as_default():
                summary.scalar('loss', loss.item(), step=self.globaliter)
    
                
      def test(self, epoch):
        self.model.eval()
        test_loss = 0
        correct = 0
    
        with torch.no_grad():
          for data, target in self.test_loader:
            data, target = data.to(self.device), target.to(self.device)
            predictions = self.model(data)
    
            test_loss += F.nll_loss(predictions, target, reduction='sum').item()
            prediction = predictions.argmax(dim=1, keepdim=True)
            correct += prediction.eq(target.view_as(prediction)).sum().item()
    
          test_loss /= len(self.test_loader.dataset)
          accuracy = 100. * correct / len(self.test_loader.dataset)
    
          print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
              test_loss, correct, len(self.test_loader.dataset), accuracy))
          with test_summary_writer.as_default():
              summary.scalar('loss', test_loss, step=self.globaliter)
              summary.scalar('accuracy', accuracy, step=self.globaliter)
              
              
    def main():
      
      trainer = Trainer(model_config)
      
      for epoch in range(1, trainer.epochs + 1):
          trainer.train(epoch)
          trainer.test(epoch)
    
      if (trainer.save_model):
          torch.save(trainer.model.state_dict(),"mnist_cnn.pt")
    current_time = str(datetime.datetime.now().timestamp())
    train_log_dir = 'logs/tensorboard/train/' + current_time
    test_log_dir = 'logs/tensorboard/test/' + current_time
    train_summary_writer = summary.create_file_writer(train_log_dir)
    test_summary_writer = summary.create_file_writer(test_log_dir)
    %tensorboard --logdir logs/tensorboard

    main()
    Train Epoch: 1 [0/60000 (0%)]    Loss: 2.320306
    Train Epoch: 1 [3200/60000 (5%)]    Loss: 0.881239
    Train Epoch: 1 [6400/60000 (11%)]    Loss: 0.014427
    Train Epoch: 1 [9600/60000 (16%)]    Loss: 0.046511
    Train Epoch: 1 [12800/60000 (21%)]    Loss: 0.194090
    Train Epoch: 1 [16000/60000 (27%)]    Loss: 0.178779
    Train Epoch: 1 [19200/60000 (32%)]    Loss: 0.437568
    Train Epoch: 1 [22400/60000 (37%)]    Loss: 0.058614
    Train Epoch: 1 [25600/60000 (43%)]    Loss: 0.051354
    Train Epoch: 1 [28800/60000 (48%)]    Loss: 0.339627
    Train Epoch: 1 [32000/60000 (53%)]    Loss: 0.057814
    Train Epoch: 1 [35200/60000 (59%)]    Loss: 0.216959
    Train Epoch: 1 [38400/60000 (64%)]    Loss: 0.111091
    Train Epoch: 1 [41600/60000 (69%)]    Loss: 0.268371
    Train Epoch: 1 [44800/60000 (75%)]    Loss: 0.129569
    Train Epoch: 1 [48000/60000 (80%)]    Loss: 0.392319
    Train Epoch: 1 [51200/60000 (85%)]    Loss: 0.374106
    Train Epoch: 1 [54400/60000 (91%)]    Loss: 0.145877
    Train Epoch: 1 [57600/60000 (96%)]    Loss: 0.136342
    
    Test set: Average loss: 0.1660, Accuracy: 9497/10000 (95%)
    
    Train Epoch: 2 [0/60000 (0%)]    Loss: 0.215095
    Train Epoch: 2 [3200/60000 (5%)]    Loss: 0.064202
    Train Epoch: 2 [6400/60000 (11%)]    Loss: 0.059504
    Train Epoch: 2 [9600/60000 (16%)]    Loss: 0.116854
    Train Epoch: 2 [12800/60000 (21%)]    Loss: 0.259310
    Train Epoch: 2 [16000/60000 (27%)]    Loss: 0.280154
    Train Epoch: 2 [19200/60000 (32%)]    Loss: 0.260245
    Train Epoch: 2 [22400/60000 (37%)]    Loss: 0.039311
    Train Epoch: 2 [25600/60000 (43%)]    Loss: 0.049329
    Train Epoch: 2 [28800/60000 (48%)]    Loss: 0.437081
    Train Epoch: 2 [32000/60000 (53%)]    Loss: 0.094939
    Train Epoch: 2 [35200/60000 (59%)]    Loss: 0.311777
    Train Epoch: 2 [38400/60000 (64%)]    Loss: 0.076921
    Train Epoch: 2 [41600/60000 (69%)]    Loss: 0.800094
    Train Epoch: 2 [44800/60000 (75%)]    Loss: 0.074938
    Train Epoch: 2 [48000/60000 (80%)]    Loss: 0.240811
    Train Epoch: 2 [51200/60000 (85%)]    Loss: 0.303044
    Train Epoch: 2 [54400/60000 (91%)]    Loss: 0.372847
    Train Epoch: 2 [57600/60000 (96%)]    Loss: 0.290946
    
    Test set: Average loss: 0.1341, Accuracy: 9634/10000 (96%)
    
    Train Epoch: 3 [0/60000 (0%)]    Loss: 0.092767
    Train Epoch: 3 [3200/60000 (5%)]    Loss: 0.038457
    Train Epoch: 3 [6400/60000 (11%)]    Loss: 0.005179
    Train Epoch: 3 [9600/60000 (16%)]    Loss: 0.168411
    Train Epoch: 3 [12800/60000 (21%)]    Loss: 0.171331
    Train Epoch: 3 [16000/60000 (27%)]    Loss: 0.267252
    Train Epoch: 3 [19200/60000 (32%)]    Loss: 0.072991
    Train Epoch: 3 [22400/60000 (37%)]    Loss: 0.034315
    Train Epoch: 3 [25600/60000 (43%)]    Loss: 0.143128
    Train Epoch: 3 [28800/60000 (48%)]    Loss: 0.324783
    Train Epoch: 3 [32000/60000 (53%)]    Loss: 0.049743
    Train Epoch: 3 [35200/60000 (59%)]    Loss: 0.090172
    Train Epoch: 3 [38400/60000 (64%)]    Loss: 0.002107
    Train Epoch: 3 [41600/60000 (69%)]    Loss: 0.025945
    Train Epoch: 3 [44800/60000 (75%)]    Loss: 0.054859
    Train Epoch: 3 [48000/60000 (80%)]    Loss: 0.009291
    Train Epoch: 3 [51200/60000 (85%)]    Loss: 0.010495
    Train Epoch: 3 [54400/60000 (91%)]    Loss: 0.132548
    Train Epoch: 3 [57600/60000 (96%)]    Loss: 0.005778
    
    Test set: Average loss: 0.1570, Accuracy: 9553/10000 (96%)
    
    Train Epoch: 4 [0/60000 (0%)]    Loss: 0.103177
    Train Epoch: 4 [3200/60000 (5%)]    Loss: 0.087844
    Train Epoch: 4 [6400/60000 (11%)]    Loss: 0.066604
    Train Epoch: 4 [9600/60000 (16%)]    Loss: 0.052869
    Train Epoch: 4 [12800/60000 (21%)]    Loss: 0.091576
    Train Epoch: 4 [16000/60000 (27%)]    Loss: 0.094903
    Train Epoch: 4 [19200/60000 (32%)]    Loss: 0.247008
    Train Epoch: 4 [22400/60000 (37%)]    Loss: 0.037751
    Train Epoch: 4 [25600/60000 (43%)]    Loss: 0.067071
    Train Epoch: 4 [28800/60000 (48%)]    Loss: 0.191988
    Train Epoch: 4 [32000/60000 (53%)]    Loss: 0.403029
    Train Epoch: 4 [35200/60000 (59%)]    Loss: 0.547171
    Train Epoch: 4 [38400/60000 (64%)]    Loss: 0.187923
    Train Epoch: 4 [41600/60000 (69%)]    Loss: 0.231193
    Train Epoch: 4 [44800/60000 (75%)]    Loss: 0.010785
    Train Epoch: 4 [48000/60000 (80%)]    Loss: 0.077892
    Train Epoch: 4 [51200/60000 (85%)]    Loss: 0.093144
    Train Epoch: 4 [54400/60000 (91%)]    Loss: 0.004715
    Train Epoch: 4 [57600/60000 (96%)]    Loss: 0.083726
    
    Test set: Average loss: 0.1932, Accuracy: 9584/10000 (96%)

    核心就是标红的地方。 

  • 相关阅读:
    php 日期处理 DateTime
    http范围请求
    fiddle扩展
    汉字编码 (GB2312 GBK GB18030)
    Navicat http 通道增加验证
    vim 支持 nginx配置文件 语法高亮
    composer 使用
    剖析nsq消息队列(三) 消息传输的可靠性和持久化[一]
    剖析nsq消息队列(二) 去中心化源码解析
    剖析nsq消息队列(一) 简介及去中心化实现原理
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12470678.html
Copyright © 2020-2023  润新知