• UVALive


    题意:每个点i有(s_i)个人和(b_i)份食物,每个人都要找到一份食物.现在有M条有向边,从点i到点j,容量为c,第一次走过不要紧,从第二次开始就要承担(p(0<p<1))的道路损坏的风险.题目保证每个人都能拿到食物,求这个风险的最小值.
    分析:建立源点S和汇点T.从S到点i建容量为(s_i),费用为0的边;从点i到T建容量为(b_i),费用为0的边.
    风险的最小值可以转化为求安全达成目标的. 则(ans = prod (1-p_i)^{k_i}),
    对ans取对数,(log(ans) = sum k_i*log(1-p_i)).因为需要求这个值最大,所以费用需要取反.
    因为第一次走没有风险,可以将这条容量为1的边分离出来,若容量还有剩余则建容量为(c-1),费用为(-log(1-p))的边.
    跑一遍费用流,费用取反再还原之后就是最大的安全通过的概率,1减去这个概率就是最小的风险.

    #include<bits/stdc++.h>
    using namespace std;
    #define eps 1e-7
    const int MAXN = 10005;
    const int MAXM = 100005;
    const int INF = 0x3f3f3f3f;
    struct Edge{
        int to, next, cap, flow;
        double cost;
    } edge[MAXM];
    int head[MAXN], tot;
    int pre[MAXN];
    double dis[MAXN];
    bool vis[MAXN];
    int N; 
    void init(int n)
    {
        N = n;
        tot = 0;
        memset(head, -1, sizeof(head));
    }
    
    void AddEdge(int u, int v, int cap, double cost)
    {
        edge[tot] = (Edge){v,head[u],cap,0,cost};
        head[u] = tot++;
        edge[tot] = (Edge){u,head[v],0,0,-cost};
        head[v] = tot++;
    }
    
    bool spfa(int s, int t){
        queue<int> q;
        for (int i = 0; i <= N; i++){
            dis[i] = INF;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while (!q.empty()){
            int u = q.front();
            q.pop();
            vis[u] = false;
            for (int i = head[u]; i != -1; i = edge[i].next){
                int v = edge[i].to;
    
                if (edge[i].cap > edge[i].flow && dis[v] - (dis[u] + edge[i].cost)> eps){
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if (!vis[v]){
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if (pre[t] == -1) return false;
        else  return true;
    }
    
    int minCostMaxflow(int s, int t, double &cost){
        int flow = 0;
        cost = 0;
        while (spfa(s, t)){
            int Min = INF;
            for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
                if (Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
                edge[i].flow += Min;
                edge[i ^ 1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    int have[MAXN];
    int need[MAXN];
    
    
    int main()
    {
        #ifndef ONLINE_JUDGE
            freopen("in.txt", "r", stdin);
            freopen("out.txt", "w", stdout);
        #endif
        int T;
        scanf("%d",&T);
        while(T--){
            int n,m;
            scanf("%d %d",&n,&m);
            init(n+2);
            int u,v; double w;
            int s= 0, t = n+1;
            for(int i=1 ; i<=n; ++i){
                scanf("%d %d", &need[i], &have[i]);
            }
            for(int i=1;i<=n;++i){
                AddEdge(s,i,need[i],0);
                AddEdge(i,t,have[i],0);
            }
    
            int c;
            double p;
            for(int i=1;i<=m;++i){
                scanf("%d %d %d %lf",&u, &v, &c, &p);
                if(c >= 1) AddEdge(u,v,1,0.0);
                if(c > 1) AddEdge(u,v,c-1,-log2(1.0-p));
            }
            double cost = 0.0;
            minCostMaxflow(s,t,cost);
            //cout<<cost<<endl;
            printf("%.2f
    ",1.0-pow(2.0,-cost));
        }
        return 0;
    }
    
  • 相关阅读:
    FZU-2087 统计树边(最小生成树)
    HDU-1599 find the mincost route(floyd求最小环)
    BZOJ-1191 [HNOI2006]超级英雄Hero(二分图匹配)
    FZU-2020 组合(Lucas定理)
    FZU-2232 炉石传说(二分图匹配)
    NOIP2016模拟 拼接mf(模拟)
    2016年11月10日00:26:08
    BZOJ2986 Non-Squarefree Numbers
    BZOJ3624 [Apio2008]免费道路
    BZOJ3224 Tyvj 1728 普通平衡树
  • 原文地址:https://www.cnblogs.com/xiuwenli/p/9748187.html
Copyright © 2020-2023  润新知