机器学习之路虽漫漫无垠,但莘莘学子依然纷纷投入到机器学习的洪流中。如何更有效地开始机器学习呢?所谓「八仙过海,各显神通」,本文作者以Python语言为工具进行机器学习, 并以Kaggle竞赛中的泰坦尼克号项目进行详细解读 。跟着小编来看看吧!
随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Python,机器学习技术领域冉冉升起的一颗新星,往往是带你走向成功的首选。因此,用 Python 实现机器学习的指南是非常必要的。
用 Python 实现机器学习的介绍
那么为什么是 Python 呢?根据我的经验,Python 是最容易学习的编程语言之一。现在需要快速迭代整个过程,与此同时,数据科学家不需要深入了解这种语言,因为他们可以快速掌握它。
有多容易呢?
for anything in the_list:
print(anything)
就这么容易。Python 的语法和英语(或人类语言,而不是机器语言)语法关系密切。在 Python 的语法中没有愚蠢的大括号造成的困扰。我有一个从事质量保证(Quality Assurance)工作的同事,虽然不是软件工程师,但她可以在一天内写出产品级的 Python 代码。(真的!)
我将在下文中介绍几个基于 Python 的库。作为数据分析师和数据科学家,我们可以利用他们的杰作来帮助我们完成任务。这些不可思议的库是用 Python 实现机器学习的必备工具。
NumPy
这是一个非常有名的数据分析库。从计算数据分布的中位数,到处理多维数组,NumPy 都可以帮你完成。
Pandas
这是用来处理 CSV 文件的。当然了,你还需要处理一些表格、查看统计数据等,那 Pandas 就是可以满足你的需求的工具。
Matplotlib
把数据存储在 Pandas 的数据框后,你可能需要做一些可视化来理解数据的更多信息。毕竟一图抵千言。
Seaborn
这是另一个可视化工具,但这个工具更侧重于统计结果的可视化,比如直方图、饼图、曲线图或相关性表等。
Scikit-Learn
这是用 Python 实现机器学习的终极工具。所谓用 Python 实现机器学习指的就是这个——Scikit-Learn。所有你需要的从算法到提升的内容都能在这里找到。
Tensorflow 和 Pytorch
针对这两个工具我不会说太多。但如果你对深度学习感兴趣的话,可以详细了解一下,它们值得你花时间去学习。(我下次会再写一篇关于深度学习的教程,敬请期待!)
Python 机器学习项目
当然,只是阅读和学习是没法让你达成心愿的。你需要实际练习。正如我博客中所说的,如果你没有深入数据的话,那学习这些工具将毫无意义。因此,我在这里介绍一个可以轻松找到 Python 机器学习项目的地方。
Kaggle 是一个可以直接研究数据的平台。你可以在这个平台中解决一些项目,并达到真的擅长机器学习的地步。你可能更感兴趣另外一些东西——Kaggle 举办的机器学习竞赛,奖金高达 100,000 美元。你可能会想着碰碰运气,哈哈。
Kaggle:https://www.kaggle.com/
但最重要的并不是钱——你真的可以在这里找到用 Python 实现的机器学习项目。你可以试着完成很多项目。但如果你是个新手,你可能会想参加这项竞赛。
我们将在后面的教程中用到一个示例项目:
泰坦尼克:从灾难中进行机器学习( https://www.kaggle.com/c/titanic )
这就是众所周知的泰坦尼克号。这是一场发生在 1912 年的灾难,这场灾难波及到的乘客和机组成员共 2224 人,其中 1502 人遇难死亡。这项 Kaggle 竞赛(或者说是教程)提供了灾难中的真实数据。你的任务是解释这些数据,并预测出灾难中哪些人会活下来,哪些人不会。
用 Python 实现机器学习的教程
在深入了解泰坦尼克号的数据之前,我们要先安装一些必需的工具。
首先当然是 Python。第一次安装 Python 需要从官网上安装。你要安装 3.6 以上的版本,这样才能跟最新版本的库保持同步。
Python 官方网站:https://www.python.org/downloads/
然后可以用 Python 的 pip 安装所有的库。你刚刚下载的 Python 发行版会自动安装 pip。
需要的其他工具都可以用 pip 安装。打开终端、命令行或 PowerShell,命令如下:
pip install numpy
pip install pandaspip install matplotlibpip install seabornpip install scikit-learnpip install jupyter
看起来一切都运行良好。但是等一下,什么叫 jupyter?jupyter 表示 Julia、Python 和 R,因此它实际上是 Jupytr。但这个单词看起来太奇怪了,所以他们把它变成了 Jupyter。这是一个很有名的笔记本,你可以在这个笔记本上写交互式的 Python 代码。
只要在终端中输入 jupyter notebook,就可以打开如下图所示的浏览器页面:
你可以把代码写在绿色矩形中,而且可以交互式地编写并评价 Python 代码。
现在你已经安装了所有的工具。我们开始吧!
数据探索
探索数据是第一步。你需要从 Kaggle 的 Titanic 页面下载数据,然后将下载的数据放到你启动 Jupyter 笔记本的文件夹中。
数据下载地址:https://www.kaggle.com/c/titanic/data
然后导入必要的库:
import numpy as np
import pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filterwarnings('ignore')%matplotlib inline
载入数据:
train_df=pd.read_csv("train.csv")
train_df.head()
输出如下:
这就是我们的数据。它有下面几列:
-
PassengerId,乘客的标识符;
-
Survived,他(她)是否存活了下来;
-
Pclass,舱室类别,也许 1 表示经济舱,2 表示商务舱,3 表示头等舱;
-
Name,乘客的名字;
-
Sex,性别;
-
Age,年龄;
-
SibSp,即兄弟姐妹(siblings)或配偶(spouses),表示在船上的兄弟姐妹以及配偶的数目;
-
Parch,即父母(Parents)或子女(Children),表示在船上的父母和子女的数目;
-
Ticket,船票详情;
-
Cabin,舱号,NaN 表示未知;
-
Embarked,登船的起始地,S 表示南安普顿(Southampton),Q 表示皇后镇(Queenstown),C 表示瑟堡(Cherbourg)
在探索数据时,常常会遇到数据缺失的问题。我们来看一下
def missingdata(data):
total = data.isnull().sum().sort_values(ascending = False) percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending = False) ms=pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) ms= ms[ms["Percent"] > 0] f,ax =plt.subplots(figsize=(8,6)) plt.xticks(rotation='90') fig=sns.barplot(ms.index, ms["Percent"],color="green",alpha=0.8) plt.xlabel('Features', fontsize=15) plt.ylabel('Percent of missing values', fontsize=15) plt.title('Percent missing data by feature', fontsize=15) return msmissingdata(train_df)
我们会看到这样的结果:
舱号、年龄以及登船地的数据都有一些缺失值,而舱号信息有大量的缺失。我们需要对它们进行处理,也就是所谓的数据清理(Data Cleaning)。
数据清理
我们 90% 的时间都花在这上面。我们要针对每一个机器学习项目进行大量的数据清理。当数据清理干净时,我们就可以轻松地进行下一步了,什么都不用担心。
数据清理中最常用的技术是填充缺失数据。你可以用众数、平均数或中位数来填充缺失数据。选择这些数据没有绝对规则,你可以一一尝试,然后看看它们的表现如何。但是根据经验来讲,分类数据只能用众数,连续数据可以用中位数或平均数。所以我们用众数来填充登船地数据,用中位数来填充年龄数据。
train_df['Embarked'].fillna(train_df['Embarked'].mode()[0], inplace = True)
train_df['Age'].fillna(train_df['Age'].median(), inplace = True)
接下来的重要操作是删除数据,尤其针对大量缺失的数据。我们针对舱号数据进行以下处理:
drop_column = ['Cabin']
train_df.drop(drop_column, axis=1, inplace = True)
现在检查一下清理过的数据。
print('check the nan value in train data')
print(train_df.isnull().sum())
完美!没有任何缺失数据了!这表示数据已经清理干净了。
特征工程
现在数据已经清理干净了。接下来我们要进行特征工程。
特征工程基本上就是根据当前可用数据发现特征或数据的技术。有几种方法可以实现这种技术。在很多时候这都是常识。
我们以登船地数据为例——这是用 Q、S 或 C 填充的数据。Python 库不能处理这个,因为它只能处理数字。所以你需要用所谓的独热向量化(One Hot Vectorization)来处理,它可以把一列变成三列。用 0 或 1 填充 Embarked_Q、Embarked_S 和 Embarked_C,来表示这个人是不是从这个港口出发的。
再以 SibSp 和 Parch 为例。这两列没有什么有趣的,但是你可能会想知道某个乘客有多少家人登上了这艘船。如果家人多的话可能会增加生存几率,因为他们可以互相帮助。从另一个角度说,单独登船的乘客可能很难生存下去。
因此你可以创建新的一列,这一列是成员数量(family size),family size = SibSp + Parch + 1(乘客自己)。
最后一个例子是以 bin 列为例的。由于你认为很难区分具有相似值的事物,所以这种操作创建了值范围(ranges of values),然后将多个值组合在一起。比如,5 岁和 6 岁的乘客之间有显著的差异吗?或者 45 和 46 岁的人之间有显著的差异吗?
这就是创建 bin 列的原因。也许就年龄而言,我们可以创建 4 列——幼儿(0~14 岁)、青少年(14~20 岁)、成年人(20~40 岁)以及年长的人(40 岁以上)。
编码如下:
all_data = train_df
for dataset in all_data : dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1import re# Define function to extract titles from passenger namesdef get_title(name): title_search = re.search(' ([A-Za-z]+).', name) # If the title exists, extract and return it. if title_search: return title_search.group(1) return ""# Create a new feature Title, containing the titles of passenger namesfor dataset in all_data: dataset['Title'] = dataset['Name'].apply(get_title)# Group all non-common titles into one single grouping "Rare"for dataset in all_data: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')for dataset in all_data: dataset['Age_bin'] = pd.cut(dataset['Age'], bins=[0,14,20,40,120], labels=['Children','Teenage','Adult','Elder'])for dataset in all_data: dataset['Fare_bin'] = pd.cut(dataset['Fare'], bins=[0,7.91,14.45,31,120], labels ['Low_fare','median_fare', 'Average_fare','high_fare'])traindf=train_dffor dataset in traindf: drop_column = ['Age','Fare','Name','Ticket'] dataset.drop(drop_column, axis=1, inplace = True)drop_column = ['PassengerId']traindf.drop(drop_column, axis=1, inplace = True)traindf = pd.get_dummies(traindf, columns = ["Sex","Title","Age_bin","Embarked","Fare_bin"], prefix=["Sex","Title","Age_type","Em_type","Fare_type"])
现在,你已经创建完成所有的特征了。接着我们看看这些特征之间的相关性:
sns.heatmap(traindf.corr(),annot=True,cmap='RdYlGn',linewidths=0.2) #data.corr()-->correlation matrix
fig=plt.gcf()fig.set_size_inches(20,12)plt.show()
相关值接近 1 意味着高度正相关,-1 意味着高度负相关。例如,性别为男和性别为女之间就呈负相关,因为必须将乘客识别为一种性别(或另一种)。此外,你还可以看到,除了用特征工程创建的内容外,没有哪两种是高度相关的。这证明我们做得对。
如果某些因素之间高度相关会怎么样?我们可以删除其中的一个,新列中的信息并不能给系统提供任何新信息,因为这两者是完全一样的。
用 Python 实现机器学习
现在我们已经到达本教程的高潮——机器学习建模。
from sklearn.model_selection import train_test_split #for split the data
from sklearn.metrics import accuracy_score #for accuracy_scorefrom sklearn.model_selection import KFold #for K-fold cross validationfrom sklearn.model_selection import cross_val_score #score evaluationfrom sklearn.model_selection import cross_val_predict #predictionfrom sklearn.metrics import confusion_matrix #for confusion matrixall_features = traindf.drop("Survived",axis=1)Targeted_feature = traindf["Survived"]X_train,X_test,y_train,y_test = train_test_split(all_features,Targeted_feature,test_size=0.3,random_state=42)X_train.shape,X_test.shape,y_train.shape,y_test.shape
Scikit-Learn 库中有多种算法供你选择:
-
逻辑回归
-
随机森林
-
支持向量机
-
K 最近邻
-
朴素贝叶斯
-
决策树
-
AdaBoost
-
LDA
-
梯度增强
你可能感到不知所措,想弄清什么是什么。别担心,只要将它当做「黑箱」对待就好——选一个表现最好的。
以我最喜欢的随机森林算法为例:
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(criterion='gini', n_estimators=700, min_samples_split=10,min_samples_leaf=1, max_features='auto',oob_score=True, random_state=1,n_jobs=-1)model.fit(X_train,y_train)prediction_rm=model.predict(X_test)print('--------------The Accuracy of the model----------------------------')print('The accuracy of the Random Forest Classifier is', round(accuracy_score(prediction_rm,y_test)*100,2))kfold = KFold(n_splits=10, random_state=22) # k=10, split the data into 10 equal partsresult_rm=cross_val_score(model,all_features,Targeted_feature,cv=10,scoring='accuracy')print('The cross validated score for Random Forest Classifier is:',round(result_rm.mean()*100,2))y_pred = cross_val_predict(model,all_features,Targeted_feature,cv=10)sns.heatmap(confusion_matrix(Targeted_feature,y_pred),annot=True,fmt='3.0f',cmap="summer")plt.title('Confusion_matrix', y=1.05, size=15)
哇哦!准确率高达 83%。就第一次尝试而言,这个结果已经很好了。
交叉验证分数的意思是 K 折验证方法。如果 K=10,就是说要把数据分成 10 个变量,计算所有分数的均值,并将它们作为最终分数。
微调
现在你已经完成了用 Python 实现机器学习的步骤。但再加一个步骤可以让你得到更好的结果——微调。微调的意思是为机器学习算法找到最佳参数。以上面的随机森林代码为例:
model = RandomForestClassifier(criterion='gini', n_estimators=700,
min_samples_split=10,min_samples_leaf=1, max_features='auto',oob_score=True, random_state=1,n_jobs=-1)
你需要设置许多参数。顺便说一下,上面的都是默认值。你可以根据需要改变参数。但当然了,这需要花费很多时间。
别担心——有一种叫做网格搜索(Grid Search)的工具,它可以自动找出最佳参数。听起来还不错,对吧?
# Random Forest Classifier Parameters tunning
model = RandomForestClassifier()n_estim=range(100,1000,100)## Search grid for optimal parametersparam_grid = {"n_estimators" :n_estim}model_rf = GridSearchCV(model,param_grid = param_grid, cv=5, scoring="accuracy", n_jobs= 4, verbose = 1)model_rf.fit(train_X,train_Y)# Best scoreprint(model_rf.best_score_)#best estimatormodel_rf.best_estimator_
好了,你可以自己尝试一下,并从中享受机器学习的乐趣。
总结
怎么样?机器学习看起来似乎并不难吧?用 Python 实现机器学习很简单。一切都已经为你准备好了。你可以做一些神奇的事,并给人们带来快乐。