• 经纬度与平面坐标互转,经纬度与空间直角坐标互转(C++代码)


    在三维激光点云处理中,需经常用到经纬度与平面坐标、空间直角坐标互转的功能,有时只是临时写一个测试demo,不想调用gdal,太麻烦,希望有更简单的调用方式。

    网上一通搜索,并没有找到很完整的代码,一些代码杂乱无章,正确性还需确认,于是自己动手写了这四个转换函数,在此与大家分享使用:

    头文件:

    /*******************************************************************
    *
    *    作者:    Sun Zhenxing
    *    创建日期:    20190819
    *
    *    说明:实现经纬度与平面坐标互转,实现经纬度与空间直角坐标互转
    *
    ******************************************************************/
    
    #ifndef ZTGEOGRAPHYCOORDINATETRANSFORM_H
    #define ZTGEOGRAPHYCOORDINATETRANSFORM_H
    
    #include <math.h>
    
    struct EllipsoidParameter
    {
        double a, b, f;
        double e2, ep2;
    
        // 高斯投影参数
        double c;
        double a0, a2, a4, a6;
    
        EllipsoidParameter()
        {
            // Default: wgs84
            a = 6378137.0;
            e2 = 0.00669437999013;
    
            b = sqrt(a * a * (1 - e2));
            ep2 = (a * a - b * b) / (b * b);
            f = (a - b) / a;
            double f0 = 1 / 298.257223563;
            double f1 = 1 / f;
    
            c = a / (1 - f);
            double m0, m2, m4, m6, m8;
            m0 = a * (1 - e2);
            m2 = 1.5 * e2 * m0;
            m4 = 1.25 * e2 * m2;
            m6 = 7 * e2 * m4 / 6;
            m8 = 9 * e2 * m6 / 8;
            a0 = m0 + m2 / 2 + 3 * m4 / 8 + 5 * m6 / 16 + 35 * m8 / 128;
            a2 = m2 / 2 + m4 / 2 + 15 * m6 / 32 + 7 * m8 / 16;
            a4 = m4 / 8 + 3 * m6 / 16 + 7 * m8 / 32;
            a6 = m6 / 32 + m8 / 16;
        }
    
        EllipsoidParameter(double ia, double ib)
        {
            if (ib > 1000000)    // ib 是短半轴
            {
                a = ia;
                b = ib;
    
                f = (a - b) / a;
                e2 = (a * a - b * b) / (a * a);
                ep2 = (a * a - b * b) / (b * b);
            }
            else if (ib < 1)    // ib 是椭球第一偏心率的平方
            {
                a = ia;
                e2 = ib;
    
                b = sqrt(a * a * (1 - e2));
                ep2 = (a * a - b * b) / (b * b);
                f = (a - b) / a;
            }
    
            c = a / (1 - f);
            double m0, m2, m4, m6, m8;
            m0 = a * (1 - e2);
            m2 = 1.5 * e2 * m0;
            m4 = 1.25 * e2 * m2;
            m6 = 7 * e2 * m4 / 6;
            m8 = 9 * e2 * m6 / 8;
            a0 = m0 + m2 / 2 + 3 * m4 / 8 + 5 * m6 / 16 + 35 * m8 / 128;
            a2 = m2 / 2 + m4 / 2 + 15 * m6 / 32 + 7 * m8 / 16;
            a4 = m4 / 8 + 3 * m6 / 16 + 7 * m8 / 32;
            a6 = m6 / 32 + m8 / 16;
        }
    };
    
    class ZtGeographyCoordinateTransform
    {
    public:
        ZtGeographyCoordinateTransform();
        ~ZtGeographyCoordinateTransform();
    
        EllipsoidParameter ellipPmt;
    
        double meridianLine;
        char projType;            // 'u': utm, 'g': gauss-kruger
    
        /*
        *    In projection coordinate system: x: east  y: north  z: height
        */
    
        bool XY2BL(double x, double y, double &lat, double &lon);
        bool BL2XY(double lat, double lon, double &x, double &y);
        bool XYZ2BLH(double x, double y, double z, double &lat, double &lon, double &ht);
        bool BLH2XYZ(double lat, double lon, double ht, double &x, double &y, double &z);
    };
    
    
    #endif

    源文件:

    #include "stdafx.h"
    
    #include "ztGeographyCoordinateTransform.h"
    
    /*
    *    此处未定义PI,直接使用PI值,防止与其他文件宏定义冲突
    */
    
    ZtGeographyCoordinateTransform::ZtGeographyCoordinateTransform()
        : meridianLine(-360), projType('g')
    {
    
    }
    
    ZtGeographyCoordinateTransform::~ZtGeographyCoordinateTransform()
    {
    
    }
    
    bool ZtGeographyCoordinateTransform::XY2BL(double x, double y, double &lat, double &lon)
    {
        if (projType == 'u')
        {
            y = y / 0.9996;
        }
    
        double bf0 = y / ellipPmt.a0, bf;
        double threshould = 1.0;
        while (threshould > 0.00000001)
        {
            double y0 = -ellipPmt.a2 * sin(2 * bf0) / 2 + ellipPmt.a4 * sin(4 * bf0) / 4 - ellipPmt.a6 * sin(6 * bf0) / 6;
            bf = (y - y0) / ellipPmt.a0;
            threshould = bf - bf0;
            bf0 = bf;
        }
    
        double t, j2;
        t = tan(bf);
        j2 = ellipPmt.ep2 * pow(cos(bf), 2);
    
        double v, n, m;
        v = sqrt(1 - ellipPmt.e2 * sin(bf) * sin(bf));
        n = ellipPmt.a / v;
        m = ellipPmt.a * (1 - ellipPmt.e2) / pow(v, 3);
    
        x = x - 500000;
        if (projType == 'u')
        {
            x = x / 0.9996;
        }
    
        double temp0, temp1, temp2;
        temp0 = t * x * x / (2 * m * n);
        temp1 = t * (5 + 3 * t * t + j2 - 9 * j2 * t * t) * pow(x, 4) / (24 * m * pow(n, 3));
        temp2 = t * (61 + 90 * t * t + 45 * pow(t, 4)) * pow(x, 6) / (720 * pow(n, 5) * m);
        lat = (bf - temp0 + temp1 - temp2) * 57.29577951308232;
    
        temp0 = x / (n*cos(bf));
        temp1 = (1 + 2 * t * t + j2) * pow(x, 3) / (6 * pow(n, 3) * cos(bf));
        temp2 = (5 + 28 * t * t + 6 * j2 + 24 * pow(t, 4) + 8 * t * t * j2) * pow(x, 5) / (120 * pow(n, 5) * cos(bf));
        lon = (temp0 - temp1 + temp2) * 57.29577951308232 + meridianLine;
    
        return true;
    }
    
    bool ZtGeographyCoordinateTransform::BL2XY(double lat, double lon, double &x, double &y)
    {
        if (meridianLine < -180)
        {
            meridianLine = int((lon + 1.5) / 3) * 3;
        }
    
        lat = lat * 0.0174532925199432957692;
        double dL = (lon - meridianLine) * 0.0174532925199432957692;
    
        double X = ellipPmt.a0 * lat - ellipPmt.a2 * sin(2 * lat) / 2 + ellipPmt.a4 * sin(4 * lat) / 4 - ellipPmt.a6 * sin(6 * lat) / 6;
        double tn = tan(lat);
        double tn2 = tn * tn;
        double tn4 = tn2 * tn2;
    
        double j2 = (1 / pow(1 - ellipPmt.f, 2) - 1) * pow(cos(lat), 2);
        double n = ellipPmt.a / sqrt(1.0 - ellipPmt.e2 * sin(lat) * sin(lat));
    
        double temp[6] = { 0 };
        temp[0] = n * sin(lat) * cos(lat) * dL * dL / 2;
        temp[1] = n * sin(lat) * pow(cos(lat), 3) * (5 - tn2 + 9 * j2 + 4 * j2 * j2) * pow(dL, 4) / 24;
        temp[2] = n * sin(lat) * pow(cos(lat), 5) * (61 - 58 * tn2 + tn4) * pow(dL, 6) / 720;
        temp[3] = n * cos(lat) * dL;
        temp[4] = n * pow(cos(lat), 3) * (1 - tn2 + j2) * pow(dL, 3) / 6;
        temp[5] = n * pow(cos(lat), 5) * (5 - 18 * tn2 + tn4 + 14 * j2 - 58 * tn2 * j2) * pow(dL, 5) / 120;
    
        y = X + temp[0] + temp[1] + temp[2];
        x = temp[3] + temp[4] + temp[5];
    
        if (projType == 'g')
        {
            x = x + 500000;
        }
        else if (projType == 'u')
        {
            x = x * 0.9996 + 500000;
            y = y * 0.9996;
        }
    
        return true;
    }
    
    bool ZtGeographyCoordinateTransform::XYZ2BLH(double x, double y, double z, double &lat, double &lon, double &ht)
    {
        double preB, preN;
        double nowB = 0, nowN = 0;
        double threshould = 1.0;
    
        preB = atan(z / sqrt(x * x + y * y));
        preN = ellipPmt.a / sqrt(1 - ellipPmt.e2 * sin(preB) * sin(preB));
        while (threshould > 0.0000000001)
        {
            nowN = ellipPmt.a / sqrt(1 - ellipPmt.e2 * sin(preB) * sin(preB));
            nowB = atan((z + preN * ellipPmt.e2 * sin(preB)) / sqrt(x * x + y * y));
    
            threshould = fabs(nowB - preB);
            preB = nowB;
            preN = nowN;
        }
        ht = sqrt(x * x + y * y) / cos(nowB) - nowN;
        lon = atan2(y, x) * 57.29577951308232;    // 180 / pi
        lat = nowB * 57.29577951308232;
    
        return true;
    }
    
    bool ZtGeographyCoordinateTransform::BLH2XYZ(double lat, double lon, double ht, double &x, double &y, double &z)
    {
        double sinB = sin(lat / 57.29577951308232);
        double cosB = cos(lat / 57.29577951308232);
        double sinL = sin(lon / 57.29577951308232);
        double cosL = cos(lon / 57.29577951308232);
        
        double N = ellipPmt.a / sqrt(1.0 - ellipPmt.e2 * sinB * sinB);
        x = (N + ht) * cosB * cosL;
        y = (N + ht) * cosB * sinL;
        z = (N * ellipPmt.b * ellipPmt.b / (ellipPmt.a * ellipPmt.a) + ht) * sinB;
    
        return true;
    }

    测试代码:

    int _tmain(int argc, _TCHAR* argv[])
    {
        ZtGeographyCoordinateTransform ztGCT;
    
        // 真值: 21.863450812    108.799096876    -4.103
        double x = -1908410.6124, y = 5606209.0019,  z = 2360385.6084;
    
        double lat, lon, ht;
        ztGCT.XYZ2BLH(x, y, z, lat, lon, ht);
        printf("%.9lf	%.9lf	%.3lf
    ", lat, lon, ht);
    
        ztGCT.BLH2XYZ(lat, lon, ht, x, y, z);
        printf("%.3lf	%.3lf	%.3lf
    
    ", x, y, z);
    
        // 真值: 39.731939769    116.300105669
        x = 440000;
        y = 4400000;
    
        ztGCT.meridianLine = 117;
        ztGCT.XY2BL(x, y, lat, lon);
        printf("%.9lf	%.9lf
    ", lat, lon);
    
        ztGCT.BL2XY(lat, lon, x, y);
        printf("%.3lf	%.3lf
    
    ", x, y);
    
        return 0;
    }

     

  • 相关阅读:
    家庭作业有益吗?
    视图、触发器、事务、存储过程、函数
    Navicat使用和pymysql
    表查询
    外键
    MySQL表操作
    进程池线程池、协程
    全局解释器锁及其他用法
    线程
    进程
  • 原文地址:https://www.cnblogs.com/xingzhensun/p/11377963.html
Copyright © 2020-2023  润新知