• 概率论01


    作者:桂。

    时间:2018-06-26  22:38:04

    链接:https://www.cnblogs.com/xingshansi/p/9231644.html 


    前言

    系统回顾数学知识,并学习补充相应的内容。随手记录在博客里,初步打算:

    • 概率论与数理统计
    • 高等数学
    • 线性代数
    • 矩阵论
    • 数值优化
    • 动态规划
    • 运筹学
    • 凸优化
    • 随机过程

    都是硬骨头,慢慢啃吧。

     一、概率论与数理统计

    浙江大学 第四版。

    第一章

    1- 确定性现象 / 不确定性现象。  —> 个别试验结果不确定,大量重复试验具有统计规律随机现象

    2- 古典概型:又称等可能概型,特点:1)样本空间元素个数有限,2)每个基本时间等可能。

    3- 排列、组合:

    排列-permutation/Arrangement,故对应$A^m_n$,分为有放回、无放回。

    组合-Combination,故对应$C^m_n$,分为有放回、无放回。

    二者区别:排列需考虑元素之间的顺序,而组合不必考虑。

    其实数独、拼图也都是组合,由此想到平时把各种信息罗列起来,有助于分析判断。

    4- 条件概率:conditonal probability,P(A|B) = P(AB)/P(B)

    对于互不相容的事件,P(U B_i | A) = ∑P(B_i A)/P(A)

    一般地,P(B U C |A) = P(B|A)+P(C|A)-P(BC|A),概率性质不受条件限制。

    5- 乘法公式:

    直观理解:先有老大,老大基础上再有老二,老大老二基础上再有老三,以此类推。

    6- 全概率公式:

    7- 贝叶斯公式:

     

    贝叶斯可以看作权重。

    对比分析:

      全概率: 因 -> 果;

      贝叶斯: 果 -> 因;

    贝叶斯应用的示例:

    线索1:心情好 —— 按时吃饭概率为95%

    线索2:心情不好——按时吃饭概率为50%

    线索3:平时心情好的概率为90%

    线索4:今早按时吃饭

    推断:今天心情好的概率?

     8- 独立性

    P(AB)=P(A)P(B),即概率上不受条件影响,自然相互独立。该定义与 互斥 不同。


    第二章

    1- 离散:分布率 + 概率   连续:分布函数 + 概率密度

    2- 几种常见分布

    这个需要梳理一下,

    最基本的:0-1分布

    独立重复n次0-1试验,成为n重伯努利试验,发生k次的概率为组合问题:

    ,记为服从参数n,p的二项分布,也称伯努利分布

    当n->∞,【一段时间n等分,事件发生λ次】得:

    从而得到泊松分布

    泊松分布的均值方差都是λ,即np = np(1-p),因此p -> 0 才行。

    例如平时打游戏,一段时间内,怪物出现的个数是固定的,但怪物出现的时间是随机的,设定的时候怪物需要服从泊松分布。

    更一般地,一段时间内平均发生λ次,该类模型都符合泊松分布。

    容易证明:泊松分布相邻事件发生的间隔,符合指数分布

    泊松分布针对的是离散事件,事件n趋于无穷大,则时间间隔趋于无穷小,可认为是连续:

    证明

    对于泊松分布:

    假设:

    这里用到斯特林公式【斯特林公式推导.pdf】:

    借助斯特林公式( Stirling’s formula)泊松分布的分布n!可表述为:

    泊松分布进一步表述为:

    由于:

    泊松分布:

    又因为

    从而:

    可不就是正态分布吗?

    可以进一步推出:泊松分布的均值、方差都是λ,因此:泊松分布极限情况得出的正态分布:该正态分布均值、方差相等。

    更多细节可参考:附件

    存疑:平时分析信号特性,通常假设噪声为高斯白噪声,即噪声统计特性符合正态分布,但采样信号已经是离散信号,假设服从泊松分布更合理?

    概括

    0-1分布 —> 二项分布 —> 泊松分布【指数分布】 —> 正态分布【也可由中心极限定理推出】

    正态分布是所有分布趋于极限大样本的分布,属于连续分布。二项分布与泊松分布,则都是离散分布,二项分布的极限分布是泊松分布、泊松分布的极限分布是正态分布,即np=λ,当n很大时,可以近似相等。当n很大时(还没达到连续的程度),可以用泊松分布近似代替二项分布;当n再变大,几乎可以看成连续时,二项分布和泊松分布都可以用正态分布来代替。

    3- 复合函数的概率密度

    证明:

    对于h'(y)>0,F(Y<y) = F(g(X)<y) = F(X<h(y))

    [F(X<h(y))]‘ = fx[h(y)]h'(y),得证。其他情况类似。


    第三章

     二维联合概率分布,略。

    第四章

    1- 数学期望

    复合:

    证明

     二维同理:

    2- 方差

    3- 切比雪夫(Chebyshev)不等式

    证明

     

    无需知道分布情况,只需知道一阶矩、二阶矩,借助切比雪夫估计概率P{|X-mu| >= epsilon} 的上界

    4- 协方差与相关系数

    方差体现的是:数据围绕期望的波动情况。

    协方差体现的是:

    两个变量之和的方差与各自方差的差,也可从相关系数角度理解:表征了不同变量的相关性。

    5- 混合矩

    6- 中心矩

    7- 协方差矩阵

    8- 多维正态分布

     

  • 相关阅读:
    洛谷 P1886 滑动窗口(单调队列)
    POJ 2559 Largest Rectangle in a Histogram(单调栈)
    eclipse开发velocity实例(初学)
    Spring MVC 教程,快速入门,深入分析
    传智博客(JavaWeb方面的所有知识)听课记录(经典)
    JSP/SERVLET入门教程--Servlet 使用入门
    javaweb入门实例---servlet例子
    Eclipse快捷键大全(转载)
    简单java web应用程序搭建与部署
    Servlet 工作原理解析
  • 原文地址:https://www.cnblogs.com/xingshansi/p/9231644.html
Copyright © 2020-2023  润新知