• 【数据结构】用详细图文把「栈」搞明白(原理篇)


    【系列文章合集】

    前面已经介绍过了两种线性表——顺序存储结构的顺序表链式存储结构的链表,也介绍了如何对其进行基本增删改查操作。这两种线性表的增加和删除可以在表的任意位置进行操作,比如链表的头插法和尾插法。

    下面介绍一种特殊的线性表——栈。

    1. 什么是栈?

    栈,我们在日常生活中经常会听到一个与之相关的词语——栈道。什么是栈道?指沿悬崖峭壁修建的一种道路。李白诗《蜀道难》中的“天梯石栈相勾连”就是指这种栈:

    图片来自网络

    这种栈道的特点是很窄、很险,上图的栈仅能容纳一人,只能通过一侧进来和出去。在上图中,如果最左边的人想要出去,就得等右边的人全走了,他才能走。也即,最先进来的最后出去,最后进来的最先出去。

    栈的英文是 Stack,本义是“一堆成叠的”。比如一堆成叠的书:

    在这叠书中,放书和拿书都从上面,要想拿到底下那个最大的,就得先把上面的几个小的先拿掉。也即,先放的书最后才能拿,最后放的书可以最先那。

    有了这两个实际的例子,我们心中对“栈”这个数据结构就有了一个“形状”了。

    首先,栈是一个线性表(线性表的详细介绍),所以它得具有以下特点:

    • 线性表由若干元素组成,用来存储信息。
    • 元素之间有顺序。
    • 除了首元素(只有一个直接后继元素)和尾元素(只有一个直接前驱元素)外,其它元素都有且仅有一个直接前驱元素和一个直接后继元素。

    其次,栈是一个受限的线性表,受限之处为:

    • 只能在一端进行操作(增删改查等)

    根据以上总结的特点,我们可以画出栈的示意图,由于只能在一端进行操作,所以我们可以将其画为只有一个开口的“容器”:

    栈的示意图

    进行插入和删除操作的那一端称为栈顶(表尾),另一端称为栈底(表头)。

    栈有两种重要的操作——入栈(压栈)和出栈(弹栈)。

    所谓入栈(压栈),即栈的插入操作,由于栈的只能从栈顶插入元素的特性,所以插入元素看起来是将元素给“压入”栈。

    入栈示意图

    所谓出栈(弹栈),即栈的删除操作,由于栈的只能从栈顶删除元素的特性,所以删除元素看起来是将元素给“弹出”栈,弹出的元素必定是栈顶元素。

    出栈示意图

    栈的只能在一端操作的特性,导致栈具有一个非常特殊的特点,下图中的栈,元素入栈的顺序为:1、2、3、4,但是元素出栈的顺序则为:4、3、2、1。

    也即,先入栈的后出栈(First In Last Out, FILO),后入栈的先出栈(Last In First Out, LIFO),这是栈作为一种受限的线性表的非常重要的特性。

    总结一下:栈是一种只能在表尾操作的后入先出的受限的线性表。

    2. 栈的实现思路

    栈虽然是一种受限的线性表,但线性表有的一些基本特性,栈也具备。在前面已经介绍过了线性表的顺序存储结构(数组实现)和线性表的链式存储结构(链表实现),栈也可以使用这两种方式来实现得到数组栈和链表栈。

    2.1. 数组实现——数组栈

    分析一下栈的结构就可以知道栈有两个必要结构:

    • 用来存储数据的数组—— data[]
    • 用来表示线性表的最大存储容量的值——MAXSIZE
    • 用来标识栈顶元素的栈顶下标—— top

    这里规定:栈顶下标是栈顶元素的下标。

    栈顶下标还可以表示栈的当前长度。

    栈——数组实现

    使用 C 语言的结构体实现如下:

    为了方便起见,这里的栈只存储整数

    #define MAXSIZE 5 //栈的最大存储容量
    
    /*数组栈的结构体*/
    typedef struct {
        int data[MAXSIZE]; //存储数据的数组
        int top; //栈顶下标
    }
    

    2.2. 链表实现——链表栈

    首先我们得先了解单链表的具体原理及实现,详细介绍移步至文章【单链表】

    链表栈的结构和数组栈的结构有所不同,其必要结构如下:

    • 链表的基本单元结点 —— StackNode
      • 结点的数据域—— data
      • 结点的指针域—— next
    • 指向链表头的头指针 —— head
    • 指向栈顶结点的栈顶指针 —— top

    为了方便起见,我们可以再添加一个栈的长度—— length

    前面说了,栈是一种只能在表尾操作的后入先出的受限的线性表。放在链表中,就是只在链表尾或链表头操作。那么是选择链表尾还是链表头呢?

    上面已经列出了链表栈的必要结构,其中包括了两个指针:头指针和栈顶指针。我们可以把这两个指针合二为一,即使用链表的头指针作为栈的栈顶指针,如此一来,链表栈的操作就需要放在链表头进行,即借用链表头插法和头删法完成栈的 pushpop

    栈——链表实现

    数组栈的容量是固定的,而链表栈的容量则不是固定的。在这里,我们使用不带头结点的链表来实现栈。

    代码实现如下:

    /*链表栈结点的结构体*/
    typedef struct StackNode {
        int data; //数据域
        struct StackNode *next; //指针域
    } StackNode;
    
    /*栈的结构体*/
    typedef struct StackLink {
        StackNode *top; //栈顶指针
        int length; //栈的长度
    } StackLink;
    

    3. 栈的状态

    3.1. 数组栈的状态

    数组栈有三种状态:空栈、满栈、非空非满栈。通过栈顶下标栈的最大容量之间的关系,可以很容易判断出这三种状态。

    【空栈】:栈中没有元素。

    因为数组下标是从 0 开始的,所以此时栈顶下标 top 的值通常置为 -1,以此表示栈中无元素。

    空栈

    【满栈】:栈中元素已满,没有多余容量。

    满栈

    从图中可以看出,栈满时满足条件 top = MAXSIZE - 1

    【非空非满栈】: 栈不是空栈且容量仍有剩余。

    非空非满栈

    此时的栈满足条件 -1 < top < MAXSIZE - 1

    3.2. 链表栈的状态

    数组栈之所以有三种状态,是因为有最大容量这个限制,而链表栈的元素不收约束,所以链表栈只有空栈和非空栈两种状态。

    当为空栈时,栈顶指针和头指针都指向 NULL:

    空栈

    4. 初始化

    所谓初始化,即把栈初始化为空栈的状态。

    4.1. 数组栈的初始化

    将数组栈的栈顶下标置为 -1 即可。

    /**
     * 数组栈的初始化:将栈的栈顶下标置为 -1
     * stack: 指向要操作的栈的指针
     */
    void init(StackArray *stack)
    {
        stack->top = -1;
    }
    

    4.2. 链表栈的初始化

    需要将栈顶指针 top (即链表头指针 head)置为 NULL,将栈的长度 length 置为 0

    /**
     * 初始化:将栈顶指针置为 NULL,长度置为 0
     * stack: 指向要操作的栈的指针
     */
    void init(StackLink *stack)
    {
        stack->top = NULL;
        stack->length = 0;
    }
    

    5. 入栈操作

    5.1. 数组栈

    入栈前我们要搞清楚一个问题:

    由于栈顶下标是栈顶元素的下标,所以在入栈前我们需要先将栈顶下标“上移”,给新入栈的元素腾出位置。然后才能将新元素入栈。

    数组栈入栈

    在入栈前先检查一下栈是否已满,具体代码实现如下:

    /**
     * 入栈操作
     * stack: 指向要操作的栈的指针
     * elem: 要入栈的数据
     * return: 0失败,1成功
     */
    int push(StackArray *stack, int elem)
    {
        if (stack->top == MAXSIZE - 1) {
            printf("栈已满,无法继续入栈。
    ");
            return 0;
        }
        stack->top++;
        stack->data[stack->top] = elem;
        return 1;
    }
    

    5.2. 链表栈

    链表栈的入栈操作实质为[头插法](###2.7.2. 头插法),过程如下:

    链表栈入栈

    具体代码实现如下:

    StackNode *create_node(int elem)
    {
        StackNode *new = (StackNode *) malloc(sizeof(StackNode));
        new->data = elem;
        new->next = NULL;
        return new;
    }
    
    /**
     * 入栈操作: 本质是单链表的尾插法
     * head: 头指针
     * elem: 要入栈的结点的值
     */
    void push(StackLink *stack, int elem)
    {
        StackNode *new = create_node(elem);
        // 链表的头插法
        new->next = stack->top;
        stack->top = new;
        //栈长度加一
        stack->length++;
    }
    

    6. 出栈操作

    6.1. 数组栈

    出栈操作和入栈操作刚还相反,即先将元素出栈,然后将栈顶下标“下移”。

    数组栈出栈

    出栈前先检查栈是否为空栈,具体代码实现如下:

    /**
     * 出栈操作
     * stack: 指向要操作的栈的指针
     * elem: 指向保存变量的指针
     * return: 0失败,1成功
     */
    int pop(StackArray *stack, int *elem)
    {
        if (stack->top == -1) {
            printf("栈空,无元素可出栈。
    ");
            return 0;
        }
        *elem = stack->data[stack->top];
        stack->top--;
        return 1;
    }
    

    6.2. 链表栈

    链表栈的出栈操作实质为头删法,即从链表头删除结点,过程如下:

    链表栈出栈

    出栈前先检查栈是否为空栈,具体代码实现如下:

    /**
     * 出栈操作
     * stack: 指向要操作的栈的指针
     * elem: 指向保存变量的指针
     * return: 0失败,1成功
     */
    int pop(StackLink *stack, int *elem)
    {
        if (stack->length == 0) {
            printf("栈空,无元素可出栈。
    ");
            return 0;
        }
        // top_node 指向栈顶结点
        StackNode *top_node = stack->top;
        //保存栈顶结点的值
        *elem = top_node->data;
        //栈顶指针下移
        stack->top = top_node->next;
        //释放 top_node
        free(top_node);
        stack->length--;
        return 1;
    }
    

    7. 遍历栈

    这里以打印栈为例来介绍如何遍历栈。

    7.1. 数组栈

    数组栈的遍历本质是在遍历数组,一个 for 循环即可搞定。

    /**
     * 打印栈
     * stack: 要打印的栈
     */
    void output(StackArray stack)
    {
        if (stack.top == -1) {
            printf("空栈。
    ");
            return;
        }
        for (int i = stack.top; i >= 0; i--) {
            printf("%d ", stack.data[i]);
        }
        printf("
    ");
    }
    

    7.2. 链表栈

    链表栈的遍历本质是在遍历链表,借助一个辅助指针从栈顶开始进行 whilefor 循环即可。

    /**
     * 打印栈
     * stack: 要打印的栈
     */
    void output(StackLink *stack)
    {
        if (stack->length == 0) {
            printf("空栈。
    ");
            return;
        }
        StackNode *p = stack->top;
        while (p != NULL) {
            printf("%d ", p->data);
            p = p->next;
        }
        printf("
    ");
    }
    

    完整代码请移步至 GitHub | Gitee 获取。

    以上就是栈的基本原理介绍。

    如有错误,还请指正。

    如果感觉写的不错,可以点个关注。

  • 相关阅读:
    Cocon90.Db调用方法
    Hotmail Smtp邮箱发送的端口
    Nginx+Lua+Redis构建高并发应用
    Linux安装pear包
    Nginx中if语句中的判断条件
    SqlServer判断表、列不存在则创建
    Nginx配置参数详解
    Linux中在线安装Mysql和修改密码设置服务启动
    linux中fuser用法详解
    Java中创建访问HTTPS的自签名证书的方法
  • 原文地址:https://www.cnblogs.com/xingrenguanxue/p/14589926.html
Copyright © 2020-2023  润新知