• 【洛谷】[FJOI2018]领导集团问题


    楼上两篇题解写的有一点点复杂,有map还写了离散化……

    差分固然是一种理解方式,但其实有一种更好的理解方法和更简洁的代码。

    那么现在我就来讲一讲

    题意简述

    文字语言:求树上最大权值随祖孙关系不降的点集大小

    数学语言:求 (|S_{max}|) 使得 (forall{i,j(ancestor of i)in S}, w_ileq w_j)

    为了方便描述,我们定义这种集合为“树上LIS”。

    题解

    考虑采用数学归纳法

    类似处理序列LIS问题,对于每一个点 (u) 使用multiset维护一个集合 (f_u) 满足以下性质

    • (f_{u,i}) 表示在 (u) 的子树中选择 (i) 个点组成的所有树上LIS中,级别值 (w) 最小值最大的那一个。

    • (u) 为根节点的 (ans_u=|f_u|)(|f_u|)表示集合 (f_u) 的大小)(该性质可由上述性质发现)

    对于任意一个叶子节点 (u), (f_u)显然只含有 (w_u),满足树上LIS性质。

    再考虑不是叶子节点的 (u)

    假设点 (u) 的所有孩子 (v)(f_v) 已经满足求出并满足上述性质,我们应该如何求出 (u)(f_u) 呢?

    首先,显然 (u) 的所有孩子不会相互影响,要从以 (u) 为根节点的子树(除 (u) )中选出大小为 (i) 的树上LIS,可以直接贪心地选所有孩子集合中最大的 (i) 个,于是只需将全部 (f_v) 取并集并排序即可,于是可以直接将孩子们的 (f_v) 集合全部启发式合并丢入 (f_u) 的multiset ,记 (S=igcup_{vin u.son}f_v)

    现在我们考虑将 (u) 加入 (S) 集合并使集合满足性质

    我们直接在multiset上二分出第一个 (i) 满足 (f_{u,i}geq w_u) 那么我们将 (u) 接在 (i) 前显然是最优方案,此时 (f_{u,i-1}) 就可以被 (w_u) 替换,那么现在的集合就是我们要求的 (f_u),并且满足树上LIS性质。

    按照这样的方式在树上dfs即可求出 (f_1),此时答案即为 (|f_1|)

    复杂度证明

    该算法的复杂度为 (O(nlog^2n))

    考虑同样采用数学归纳法

    (T_u) 表示处理出 (f_u) 的时间复杂度,(S_u)表示 (u) 的子树大小

    我们需要证明 (T_u=S_ulog^2S_u)

    对于任意一个叶子节点 (u)(S_u=1),此时只需在multiset中插入 (w_u) 复杂度为 (O(1)),满足(T_i=S_ulog^2S_u)

    再考虑不是叶子节点的 (u)

    假设点 (u) 的所有孩子 (v)(T_v=S_vlog^2S_v)

    那么 (T_i=sum_{vin u.son}T_v+T_{merge})

    因为子孙们包含的节点个数(sum_{vin u.son}S_v+1=S_u)

    所以(sum_{vin u.son}T_vleq S_ulog^2S_u)

    启发式合并的复杂度为 (S_ulogS_u),使用multiset维护加一个log,(T_{merge}=S_ulog^2S_u)

    所以(T_u)(S_ulog^2S_u) 同阶

    证毕。

    代码

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 2e5 + 5;
    multiset<int> f[N];
    multiset<int>::iterator it;
    int n, w[N], ans;
    int h[N], to[N], nxt[N], t;
    bool comp(int x, int y) { return w[x] < w[y]; }
    void add(int u, int v) { to[++t] = v, nxt[t] = h[u], h[u] = t; }
    void merge(int u, int v) {
        if(f[u].size() < f[v].size()) swap(f[u], f[v]);
        for(it = f[v].begin(); it != f[v].end(); ++it) f[u].insert(*it);
    }
    void dfs(int u) {
        for(int i = h[u]; i; i = nxt[i]) dfs(to[i]), merge(u, to[i]);
        f[u].insert(w[u]);
        it = f[u].lower_bound(w[u]);
        if(it != f[u].begin()) f[u].erase(--it);
    }
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) scanf("%d", &w[i]);
        for(int i = 2; i <= n; ++i) {
            int f;
            scanf("%d", &f);
            add(f, i);
        }
        dfs(1);
        printf("%d", f[1].size());
    }
    
  • 相关阅读:
    Qt之重启应用程序
    Qt之密码框不可选中、复制、粘贴、无右键菜单等
    Qt之国际化(系统文本-QMessageBox按钮、QLineEdit右键菜单等)
    HTTP全部报文首部字段
    工厂模式
    《Qt 实战一二三》
    Qt之国际化
    Java如何读取XML文件 具体实现
    href脱离iframe显示
    iframe并排横着显示
  • 原文地址:https://www.cnblogs.com/xie-dodo/p/10615450.html
Copyright © 2020-2023  润新知